
������������	
������	
�
��������
��������
�
��������������
��������

��	���
�����
� ����
� !

10.5121/ijcnc.2010.2201 1

���������	
��	����������	��	��
���	�����	

� ��������
	������
���	

 G.F.Ali Ahammed 1, Reshma Banu2,
1Department of Electronics & Communication, Ghousia college of

Engg.Ramanagaram.
ali_ahammed@rediffmail.com

2Department of Information Science & Engg, Ghousia college of Engg.Ramanagaram.

ABSTRACT
Congestion is an important issue which researchers focus on in the Transmission Control Protocol
(TCP) network environment. To keep the stability of the whole network, congestion control algorithms
have been extensively studied. Queue management method employed by the routers is one of the
important issues in the congestion control study. Active queue management (AQM) has been proposed
as a router-based mechanism for early detection of congestion inside the network. In this paper we
analyzed several active queue management algorithms with respect to their abilities of maintaining high
resource utilization, identifying and restricting disproportionate bandwidth usage, and their deployment
complexity. We compare the performance of FRED, BLUE, SFB, and CHOKe based on simulation
results, using RED and Drop Tail as the evaluation baseline. The characteristics of different algorithms
are also discussed and compared. Simulation is done by using Network Simulator(NS2) and the graphs
are drawn using X- graph.

KEY WORDS
RED; Droptail; Fairness Index; Throughput; AQM; NS2 FRED, BLUE, SFB, CHOKe, ECN

1. INTRODUCTION
When there are too many coming packets contending for the limited shared resources, such as
the queue buffer in the router and the outgoing bandwidth, congestion may happen in the data
communication. During congestion, large amounts of packet experience delay or even be
dropped due to the queue overflow. Severe congestion problems result in degradation of the
throughput and large packet loss rate. Congestion will also decrease efficiency and reliability
of the whole network, furthermore, if at very high traffic, performance collapses completely
and almost no packets are delivered.

As a result, many congestion control methods[2] are proposed to solve this problem and avoid
the damage. Most of the congestion control algorithms are based on evaluating the network
feedbacks[2] to detect when and where congestion occurs, and take actions to adjust the
output source, such as reduce the congestion window (cwnd). Various feedbacks are used in
the congestion detection and analysis. However, there are mainly two categories: explicit
feedback and implicit feedback.
In explicit feedback algorithms, some signal packets are sent back from the congestion point
to warn the source to slow down [4], while in the implicit feedback algorithms, the source
deduces the congestion existence by observing the change of some network factors, such as
delay, throughput difference and packet loss [4]. Researchers and the IETF proposed active
queue management (AQM) as a mechanism for detecting congestion inside the network.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 2

Further, they have strongly recommended the deployment of AQM in routers as a measure to
preserve and improve WAN performance . AQM algorithms run on routers and detect
incipient congestion by typically monitoring the instantaneous or average queue size. When
the average queue size exceeds a certain threshold but is still less than the capacity of the
queue, AQM algorithms infer congestion on the link and notify the end systems to back off by
proactively dropping some of the packets arriving at a router. Alternately, instead of dropping
a packet, AQM algorithms can also set a specific bit in the header of that packet and forward
that packet toward the receiver after congestion has been inferred. Upon receiving that packet,
the receiver in turns sets another bit in its next ACK.

When the sender receives this ACK, it reduces it transmission rate as if its packet were lost.
The process of setting a specific bit in the packet header by AQM algorithms and forwarding
the packet is also called marking. A packet that has this specific bit turned on is called a
marked packet. End systems that experience the marked or dropped packets reduce their
transmission rates to relieve congestion and prevent the queue from overflowing. In practice,
most of the routers being deployed use simplistic Drop Tail algorithm, which is simple to
implement with minimal computation overhead, but provides unsatisfactory performance.

To attack this problem, many queue management algorithms are proposed, such as
Random Early Drop (RED) [3], Flow Random Early Drop (FRED) [4], BLUE [5], Stochastic
Fair BLUE (SFB) [5], and CHOKe (CHOose and Keep for responsive flows, CHOose and
Kill for unresponsive flows) [7]. Most of the algorithms claim that they can provide fair
sharing among different flows without imposing too much deployment complexity. Most of
the proposals focus on only one aspect of the problem (whether it is fairness, deployment
complexity, or computational overhead), or fix the imperfections of previous algorithms, and
their simulations setting are different from each other. These all make it difficult to evaluate,
and to choose one to use under certain traffic load.

This paper aims at a thorough evaluation among these algorithms and illustrations of their
characteristics by simulation. We compare the performance of FRED, BLUE, SFB, and
CHOKe, using RED and Drop Tail as the evaluation baseline. For each of these algorithms,
three aspects are discussed: (1) resource utilization (whether the link bandwidth is fully
utilized), (2) fairness among different traffic flows (whether different flows get their fair
share), and (3) implementation and deployment complexity (whether the algorithm requires
too much space and computation resources).

This paper is organized as follows. In section 2, we introduce the queue management
algorithms to be evaluated and how to configure their key parameters. Section 3 presents our
simulation design, parameter settings, simulation result, and comparison. Section 4 discusses
the key features of different algorithms, and their impact on performance. Section 5
summaries our conclusion.

2. QUEUE MANAGEMENT ALGORITHMS
2.1 RED (Random Early Drop)
RED [2] was designed with the objectives to (1) minimize packet loss and queuing delay, (2)
avoid global synchronization of sources, (3) maintain high link utilization, and (4) remove
biases against bursty sources. The basic idea behind RED queue management is to detect
incipient congestion early and to convey congestion notification to the end-hosts, allowing
them to reduce their transmission rates before queues in the network overflow and packets are
dropped.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 3

To do this, RED maintain an exponentially-weighted moving average (EWMA) of the
queue length which it uses to detect congestion. When the average queue length exceeds a
minimum threshold (minth), packets are randomly dropped or marked with an explicit
congestion notification (ECN) bit [2]. When the average queue length exceeds a maximum
threshold (maxth), all packets are dropped or marked.

While RED is certainly an improvement over traditional drop tail queues, it has several
shortcomings. One of the fundamental problems with RED is that they rely on queue length as
an estimator of congestion. While the presence of a persistent queue indicates congestion, its
length gives very little information as to the severity of congestion. That is, the number of
competing connections sharing the link. In a busy period, a single source transmitting at a rate
greater than the bottleneck link capacity can cause a queue to build up just as easily as a large
number of sources can. Since the RED algorithm relies on queue lengths, it has an inherent
problem in determining the severity of congestion. As a result, RED requires a wide range of
parameters to operate correctly under different congestion scenarios. While RED can achieve
an ideal operating point, it can only do so when it has a sufficient amount of buffer space and
is correctly parameterized.

RED represents a class of queue management mechanisms that does not keep the state of
each flow. That is, they put the data from the all the flows into one queue, and focus on their
overall performance. It is that which originate the problems caused by non-responsive flows.
To deal with that, a few congestion control algorithms have tried to separate different kind of
data flows, for example Fair Queue [6], Weighted Fair Queue [6], etc. But their per-flow-
scheduling philosophy is different with that of RED, which we will not discuss here.

2.2 FRED (Flow Random Early Drop)
Flow Random Early Drop (FRED) [4] is a modified version of RED, which uses per-active-
flow accounting to make different dropping decisions for connections with different
bandwidth usages. FRED only keeps track of flows that have packets in the buffer, thus the
cost of FRED is proportional to the buffer size and independent of the total flow numbers
(including the short-lived and idle flows). FRED can achieve the benefits of per-flow queuing
and round-robin scheduling with substantially less complexity.

Some other interesting features of FRED include: (1) penalizing non-adaptive flows by
imposing a maximum number of buffered packets, and surpassing their share to average per-
flow buffer usage; (2) protecting fragile flows by deterministically accepting flows from low
bandwidth connections; (3) providing fair sharing for large numbers of flows by using “two-
packet-buffer” when buffer is used up; (4) fixing several imperfections of RED by calculate
average queue length at both packet arrival and departure (which also causes more overhead).

Two parameters are introduced into FRED: minq and maxq, which are minimum and
maximum numbers of packets that each flow is allow to buffer. In order to track the average
per-active-flow buffer usage, FRED uses a global variable avgcq to estimate it. It maintains
the number of active flows, and for each of them, FRED maintains a count of buffer packets,
qlen, and a count of times when the flow is not responsive (qlen > maxq). FRED will penalize
flows with high strike values. FRED processes arriving packets using the following
algorithm:

For each arriving packet P:

Calculate average queue length
Obtain connection ID of the arriving packet: flowi connectionID(P)

if flowi has no state table then

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 4

qleni 0
strikei 0

end if
Compute the drop probability like RED: p maxp

maxth−avg
maxth−minth
maxq minth

if (avg _ maxth) then
maxq 2

end if
if (qleni _ maxq||(avg _ maxth&&qleni > 2 _ avgcq)||(qleni _ avgcq&&strikei > 1))

then
strikei strikei + 1

Drop arriving packet and return
end if

if (minth _ avg < maxth) then
if (qleni _ max(minq, avgcq)) then

Drop packet P with a probability p like RED
end if

else if (avg < minth) then
return
else

Drop packet P
return
end if

if (qleni == 0) then
Nactive Nactive + 1

end if
Enqueue packet P

For each departing packet P:
Calculate average queue length

if (qleni == 0) then
Nactive Nactive − 1

Delete state table for flow i
end if

if (Nactive) then
avgcq avg/Nactive

else
avgcq avg

end if

 Pseudo code for the FRED algorithm

2.3 BLUE
BLUE is an active queue management algorithm to manage congestion control by packet loss
and link utilization history instead of queue occupancy. BLUE maintains a single probability,
Pm, to mark (or drop) packets. If the queue is continually dropping packets due to buffer
overflow, BLUE increases Pm, thus increasing the rate at which it sends back congestion
notification or dropping packets. Conversely, if the queue becomes empty or if the link is idle,
BLUE decreases its marking probability. This effectively allows BLUE to “learn” the correct
rate it needs to send back congestion notification or dropping packets.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 5

The typical parameters of BLUE are d1, d2, and freeze_time. d1determines the amount by
which Pm is increased when the queue overflows, while d2 determines the amount by which
Pm is decreased when the link is idle. freeze_time is an important parameter that determines
the minimum time interval between two successive updates of Pm. This allows the changes in
the marking probability to take effect before the value is updated again. Based on those
parameters. The basic blue algorithms can be summarized as following:
Upon link idle event:
if ((now-
last_update)>freeze_time)

Pm = Pm-d2;

Last_update = now;

Upon packet loss event:
if ((now–
last_updatte)>freeze_time)

Pm = Pm+d1;

last_update = now;

2.4 SFB
Based on BLUE, Stochastic Fair Blue (SFB) is a novel technique for protecting TCP flows
against non-responsive flows. SFB is a FIFO queuing algorithm that identifies and rate-limits
non-responsive flows based on accounting mechanisms similar to those used with BLUE.
SFB maintains accounting bins. The bins are organized in L levels with N bins in each level.
In addition, SFB maintains L independent hash functions, each associated with one level of
the accounting bins. Each hash function maps a flow into one of the accounting bins in that
level. The accounting bins are used to keep track of queue occupancy statistics of packets
belonging to a particular bin. As a packet arrives at the queue, it is hashed into one of the N
bins in each of the L levels. If the number of packets mapped to a bin goes above a certain
threshold (i.e., the size of the bin), the packet dropping probability Pm for that bin is increased.
If the number of packets in that bin drops to zero, Pm is decreased. The observation is that a
non-responsive flow quickly drives Pm to 1 in all of the L bins it is hashed into. Responsive
flows may share one or two bins with non-responsive flows, however, unless the number of
non-responsive flows is extremely large compared to the number of bins, a responsive flow is
likely to be hashed into at least one bin that is not polluted with non-responsive flows and
thus has a normal value. The decision to mark a packet is based on Pmin the minimum Pm
value of all bins to which the flow is mapped into. If Pmin is 1, the packet is identified as
belonging to a non-responsive flow and is then rate-limited.

On every packet arrival:
Calculate hashes h0, h1, . . . , hL−1

Update bins at each level
for i = 0 to L − 1 do

if (B[i][hi].qlen > bin size) then
B[i][hi].pm B[i][hi].pm + _

Drop packet
else if (B[i][hi].qlen == 0) then
B[i][hi].pm B[i][hi].pm − _

end if
end for

pmin min(B[0][h0].pm,B[1][h1].pm, . . . ,B[L − 1][hL−1].pm)
if (pmin == 1) then

ratelimit()
else

Mark or drop packet with probability pmin
end if

On every packet departure:
Calculate hashes h0, h1, . . . , hL−1

Update bins at each level
for i = 0 to L − 1 do

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 6

if (B[i][hi].qlen == 0) then
B[i][hi].pm B[i][hi].pm − _

end if
end for

 Pseudo code for the SFB algorithm

The typical parameters of SFB algorithm are QLen, Bin_Size, d1, d2, freeze_time, N, L,
Boxtime, Hinterval. Bin_Size is the buffer space of each bin. Qlen is the actual queue length
of each bin. For each bin, d1, d2 and freeze_time have the same meaning as that in BLUE.
Besides, N and L are related to the size of the accounting bins, for the bins are organized in L
levels with N bins in each level. Boxtime is used by penalty box of SFB as a time interval
used to control how much bandwidth those non-responsive flows could take from bottleneck
links. Hinterval is the time interval used to change hashing functions in our implementation
for the double buffered moving hashing. Based on those parameters, the basic SFB queue
management algorithm is shown in the above table.

2.5 CHOKe
As a queue management algorithm, CHOKe [4] differentially penalizes non-responsive and
unfriendly flows using queue buffer occupancy information of each flow. CHOKe calculates
the average occupancy of the FIFO buffer using an exponential moving average, just as RED
does. It also marks two thresholds on the buffer, a minimum threshold minth and a maximum
threshold maxth. If the average queue size is less than minth, every arriving packet is queued
into the FIFO buffer. If the aggregated arrival rate is smaller than the output link capacity, the
average queue size should not build up to minth very often and packets are not dropped
frequently. If the average queue size is greater than maxth, every arriving packet is dropped.
This moves the queue occupancy back to below maxth. When the average queue size is bigger
than minth, each arriving packet is compared with a randomly selected packet, called drop
candidate packet, from the FIFO buffer. If they have the same flow ID, they are both dropped.
Otherwise, the randomly chosen packet is kept in the buffer (in the same position as before)
and the arriving packet is dropped with a probability that depends on the average queue size.
The drop probability is computed exactly as in RED. In particular, this means that packets are
dropped with probability 1 if they arrive when the average queue size exceeds maxth. A flow
chart of the algorithm is given in Figure 2. In order to bring the queue occupancy back to
below maxth as fast as possible, we still compare and drop packets from the queue when the
queue size is above the maxth. CHOKe has three variants:

A. Basice CHOKe (CHOKe): It behaves exactly as described in the above, that is, choose
one packet each time to compare with the incoming packet.

B. Multi-drop CHOKe (M-CHOKe): In M-CHOKe, m packets are chosen from the buffer
to compare with the incoming packet, and drop the packets that have the same flow ID as
the incoming packet. Easy to understand that choosing more than one candidate packet
improves CHOKe’s performance. This is especially true when there are multiple non-
responsive flows; indeed, as the number of non-responsive flows increases, it is necessary
to choose more drop candidate packets. Basic CHOKe is a special case of M-CHOKe
with m=1.

C. Adaptive CHOKe (A-CHOKe): A more sophisticated way to do M-CHOKe is to let
algorithm automatically choose the proper number of packets chosen from buffer. In A-
CHOKe, it is to partition the interval between minth and maxth into k regions, R1, R2, …, R-
k. When the average buffer occupancy is in Ri, m is automatically set as 2i (i = 1, 2, …, k).

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 7

On every packet arrival:

if avg _ minth then
Enqueue packet

else
Draw a random packet from the router queue

if Both packets from the same flow then
Drop both packets

else if avg _ maxth then
Enqueue packet with a probability p

else
Drop packet

end if
end if

Pseudo code for the CHOKe algorithm

3. SIMULATION AND COMPARISON
In this section, we will compare the performances of FRED, BLUE, SFB and CHOKe. We
use RED and Drop Tail as the evaluation baseline. Our simulation is based on ns-2 [8]. Both
RED and FRED have implementation for ns-2. BLUE and SFB are originally implemented in
a previous version of ns, ns-1.1, and are re-implemented in ns-2. Based on the CHOKe paper
[7], we implemented CHOKe in ns-2. In our simulation, ECN support is disabled, and
“marking a packet” means “dropping a packet”.

3.1 Simulation Settings
As different algorithms have different preferences or assumptions for the network
configuration and traffic pattern, one of the challenges in designing our simulation is to select
a typical set of network topology and parameters (link bandwidth, RTT, and gateway buffer
size), as well as load parameters (numbers of TCP and UDP flow, packet size, TCP window
size, traffic patterns) as the basis for evaluation. Currently we haven’t found systematic way
or guidance information to design the simulation. So we make the decision by reading all
related papers and extracting and combining the key characteristics from their simulations.

Figure 3. Simulation topology

The network topology we used is a classic dumb-bell configuration as shown in Figure 3.
This is a typical scenario that different types of traffic share a bottleneck router. TCP (FTP
application in particular) and UDP flows (CBR application in particular) are chosen as typical
traffic patterns.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 8

In our simulation, we use 10 TCP flows and 1 UDP flow. The bottleneck link in this
scenario is the link between two gateways. We set TCP window size as 50 packets, and the
router queue buffer size in the simulation as 150 packets (the packets size for both TCP and
UDP are 1000 bytes). For RED, we also need to choose values for minth and maxth, which are
typically set as 20% and 80% queue buffer size. In the following, we set them as 50 and 100
packets.

3.2 Metrics
Throughput and queue size are the two major metrics in our simulations. The throughput of
each flow is used to illustrate the fairness among different flows, and the total throughput can
be compared with the bottleneck bandwidth as an indicator of resource utilization. Queue size
is a direct indicator of router resource utilization. The average queue size of each flow
illustrates the fairness of router resource allocation, which also shows the different
characteristics of different algorithms. We calculate the average queue size using
exponentially weighted average (EWMA), and the aging weight is set to 0.002.

3.3 Algorithm Parameters
How to configure different algorithms for the simulation is also an issue. First, we want to
show the best performance of each algorithm under the same network topology and traffic
load. For the best performance, we need to fine-tune these algorithms for the fixed setting (as
described above) to achieve the fairest sharing with a high utilization value. The result will be
presented in Section 3.4 to show their “best-effort” performance.

On the other hand, an ideal algorithm should always achieve the best performance under
all possible settings without human intervention. The different parameters set of these
algorithms will impact their performance in different ways. We will discuss the impact of
algorithm-specific parameters and the easiness of algorithm configuration in Section 4.
3.3.1 FRED

It’s easy to set the parameters of FRED compared with RED. For the parameters coming from
RED, FRED uses a simple formula to calculate minth and maxth, and assigns fixed values to wq
(0.002) and maxq (0.02). The only parameter new to FRED is minq, whose value depends on
the router buffer size. It’s usually set to 2 or 4 because a TCP source sends no more than 3
packets back-to-back: two because of deployed ACK, and one more due to congestion
window increase. We chose to set it to 2 (which is also the built-in setting of the FRED
implementation in ns-2) after some experimentation. For most cases it turned out a FRED is
not sensitive to minq.
3.3.2 BLUE

In our simulation, the default values of BLUE static parameters are: d1 = 0.02, d2 = 0.002,
freeze_time = 0.01s. d1 is set significantly larger than d2. This is because link underutilization
can occur when congestion management is either too conservative or too aggressive, but
packet loss occurs only when congestion management is too conservative. By weighting
heavily against packet loss, BLUE can quickly react to a substantial increase in traffic load. A
rule of thrum is: d2 = d1/10.

3.3.3 SFB

The default parameter values for SFB are: d1 = 0.005, d2 = 0.001, freeze_time = 0.001s,
N=23, L=2, Boxtime = 0.05s, Hinterval = 5. Bin_Size is set as (1.5/N) of the total buffer size
of the bottleneck link. N and L are related to number of flows in the router. If the number of
non-responsive flows is large while N and L are small, the TCP flows are easily misclassified
as non-responsive flows [5]. Further more, since Boxtime indirectly determines the total
bandwidth that those non-responsive flows could take in the bottleneck link, it is fine-tuned

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 9

according to different policies to treat those non-responsive flows. So in SFB, ideal
parameters for one case might not necessarily good for other cases.

3.3.4 CHOKe

Except the parameters from RED (minth, maxth, etc), our implementation maintains three
parameters specific for CHOKe:

• adaptive_: control whether or not A-CHOKe should be applied, set adaptive_ =
1 will enable A-CHOKe;

• cand_num_: effective when adaptive_ is not set, when cand_num_ = 1, it is
basic CHOKe, otherwise, it is M-CHOKe, and cand_num_ is the number of packets
to be selected from the queue;

• interval_num_: effective when adaptive_ is set, and this parameters determines
the number of intervals to be derided.

With our experience on running CHOKe, A-CHOKe has the best performance. So in the
following simulation, we choose adaptive_ = 1 and interval_num_ = 5.

3.4 Comparison
Figure 4 and Figure 5 show the major result of the simulation. The total throughput values of all
TCP and UDP flows are not shown here. For all the simulations, the total throughputs are
reasonably high (about 90-96% of available bandwidth), indicating that all these algorithms
provide high link utilization.

Figure 4-1 shows the UDP throughput and queue length under simulations using 10 TCP
flows, 1 UDP flow, when UDP sending rate changes from 0.1Mbps to 8Mbps1. According to
this diagram, Drop Tail is the worst in terms of unfairness, which provides no protection for
adaptive flows and yields the highest UDP throughput. RED and BLUE do not work well under
high UDP sending rate. When UDP sending rate is above the bottle link bandwidth, UDP flow
quickly dominates the transmission on the bottleneck link, and TCP flows could only share the
remaining bandwidth. On the other hand, FRED, SFB and CHOKe properly penalize UDP
flow, and TCP could achieve their fair share.

One interesting point in Figure 4-1 is the behavior of CHOKe. UDP throughput decreases
with the increase of UDP rate from 2Mbps to 8Mbps. This is because, with the increase of UDP
rate, the total number of packets selected to compare increases, which will increase the dropping
probability for UDP packets, and decrease UDP flow throughput as a result.

Figure 4-2 illustrates the size of queue buffer occupied by UDP flow. It seems that buffer
usage is a good indicator of link bandwidth utilization. Similar to Figure 4-1, Drop Tail is the
worst in fairness. Although RED and BLUE are similar in permissive to non-responsive flows,
BLUE uses much less buffer. FRED and SFB are also the fairest.

1 Due to the method for changing the UDP rate in ns-2, the sample intervals we choose are not uniform,
but they will not affect our analysis

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 10

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.4 0.8 1 2 4 8

U
D

P
 T

hp
t (

M
bp

s)

UDP Rate (Mbps)

DropTail

RED

FRED

BLUE

SFB

CHOKe

Figure 4-1. UDP flow throughput

0

40

80

120

160

0.1 0.2 0.4 0.8 1 2 4 8

U
D

P
 Q

u
eu

e
S

iz
e

(p
ac

ke
t)

UDP Rate (Mbps)

DropTail

RED

FRED

BLUE

SFB

CHOKe

Figure 4-2. UDP flow queue size

Figure 5 illustrates the average queue size for UDP and TCP flows as well as the average
total buffer usage. The difference of algorithms is clearly captured in the buffer usage plots. We
can see, for Drop Tail, RED and BLUE, most of the packets in the queue are UDP flow packets,
while only a small percentage belongs to TCP flows. FRED, SFB and CHOKe effectively
penalize UDP flow and allow TCP flows to achieve a higher throughput.

It is also interesting to notice the difference among the total queue sizes. Since Drop Tail
only drops packets when the queue buffer is full, at most time, its total queue size is the
maximum queue buffer size. For RED, although it begins to provide congestion notification
when the queue size reaches minth, it only affects TCP flows, while UDP flow will keep the
same sending rate, which drives the total queue size to maxth quickly, after which all the
incoming packets will be dropped and the total queue size will be kept at maxth. In CHOKe,
however, the random packet selection mechanism effectively penalizes UDP flow after the
average queue size reaches minth. What’s more, UDP dropping rate is proportional to its
incoming rate, which will effectively keep the total queue size around minth, as illustrated in
Figure 5f. FRED, BLUE and SFB are not directly affected by minth and maxth settings, so their
total queue sizes have no obviously relation with these two parameters in Figure 5.

In some of the figures in Figure 5 where TCP flow queue size is very small, UDP flow
queue size is the same as that of the total queue size, but the corresponding queue size for TCP
flows are not zero, which seems to be a contradiction. The reason is that we draw these figures
using the EWMA value of the queue size. Although we calculate the queue size every time we
get a new packet, only EWMA value (weight = 0.002) is plotted2. It is EWMA that eliminates

2 The figures of the real queue size has a lot of jitters and difficult to read.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 11

the difference between UDP flow queue size and total queue size when TCP flow queue size is
very small.

(a) Drop Tail (b) RED (c) FRED

(d) BLUE (e) SFB (f) CHOKe.

Figure 5. Queue size in different algorithms (Notice that the total queue sizes of different algorithms are
different)

4. ALGORITHM CHARACTERISTICS
4.1 FRED
FRED algorithm focuses on the management of per-flow queue length. The parameter qlen is
compared with minq and maxq, and used as a traffic classifier. Fragile flows are those whose
qlen <= minq, robust flows are those whose minq<qlen<maxq; and non-responsive flows are
those whose qlen was once larger than maxq. The minq is set to 2 or 4, but can adapt to
average queue length when there are only few robust flows (for example, in a LAN
environment with small RTT and large buffer size).

FRED is very robust in identifying different kind of traffic, and protecting adaptive flows.
Figure 5c shows the queue length of 1 UDP flow and the sum of 10 TCP flows. The UDP
queue length was effectively limited within 10 packets, which is approximately the average
queue length. The single UDP flow is isolated and panelized, without harming the adaptive
TCP flows.

0

0.25

0.5

0.75

1

10 20 40 45 50 60 70
Th
ro
ug
hp
ut
 (M
bp
s)

Buffer size (#Packet)

TCP_Thpt

UDP_thpt

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 12

Figure 6. Impact of buffer size to FRED fairness

Figure 6 shows the impact of buffer size to FRED algorithm (without “two-packet-
mode”). It is clear that FRED works well only when the buffer size is larger (larger than 45
packets in this case) enough to hold minq packets for each active flow. When the average
queue length is larger than maxth, FRED degrades into Drop Tail, and can’t preserve fairness.
This problem is discussed in [4] and can be partly solved by using “many flow support.”

The fairness of FRED is also illustrated in Table 1. The shares of UDP flows and TCP
flows do not change very much as the bottleneck bandwidth increases from 0.5 Mbps to 8
Mbps. After the bandwidth of backbone link is large enough, the UDP flow gets its full share,
and TCP flows begin to compete with each other.

Bottleneck BW (Mpbs) 0.5 1 2 4 8 10 20
TCP_Thpt (Mbps) 0.42 0.80 1.61 3.14 5.73 7.41 13.94
UDP_Thpt (Mbps) 0.06 0.15 0.29 0.66 1.82 1.85 1.86

TCP Share (%) 83% 80% 81% 78% 72% 74% 70%
UDP Share (%) 12% 15% 14% 17% 23% 19% 9%

TCP Share : UDP Share 6.92 5.33 5.79 4.59 3.13 3.89 7.78

Table 1. Impact of bottleneck bandwidth to FRED link utilization

The FRED algorithm has an O(N) space requirement (N = buffer size), which was one of
the major advantages compared with per-flow queueing mechanisms (e.g. Fair Queueing).
But with today’s memory price, it turned out space requirement is not an important factor.
The computational resources required for each packet is more significant. For each arriving
packet, FRED need to classify the packet into a flow, update flow information, and calculate
average queue length (also done when a packet is departing), and deciding whether to accept
or drop the packet. Although optimizations can be employed to simplify the per-flow
operation, it’s not clear whether it can be cost-effectively implemented in backbone routers.
The implementation issue is not unique to per-flow algorithms, but also applies to algorithms
like RED.

In summary, FRED achieves the fairness and high link utilization by share the buffer size
among active flows. It is also easy to configure, and adapt itself to preserve performance
under different network environments (different bandwidth, buffer size, flow number) and
traffic patterns (non-adaptive flows, robust adaptive flows, and fragile flows).

4.2 BLUE
The most important consequence of using BLUE is that congestion control can be performed
with a minimal amount of buffer size. Other algorithms like RED need a large buffer size to
attain the same goal [5]. Figure 7 shows the average and actual queue length of the bottleneck
link in our simulation based on the following settings: 49 TCP flows with TCP window size
300(KB), a bottleneck link queue size 300(KB). As we can see from Figure 7, in this case the
actual queue length in the bottleneck is always kept quite small (about 100KB), while the
actual capacity is as large as 300KB. So only about 1/3 buffer space is used to achieve 0.93
Mbps bandwidth by TCP flows. The other 2/3 buffer space allows room for a burst of
packets, removing biases against bursty sources.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 13

Figure 7. BLUE queue length for TCP flows Figure 8. BLUE queue length for TCP and UDP flows

However, things get worse when non-responsive flows appear. Figure 8 show the actual
and average queue length of the bottleneck link in our simulation when a 40Mbps UDP flow
joins those 49 TCP flows. In this case, the total throughput (TCP and UDP) achieved is 0.94
Mbps, among which 0.01Mbps bandwidth is taken by 49 TCP flows while the UDP flow’s
throughput is as high as 0.93Mbps. The slow fluctuation of the bottleneck queue length
shown in Figure 8 is reasonable. At t = 40 second, the buffer of the bottleneck link is
overflowed, so Pm increases to 1 quickly. Thus all the incoming packets will be dropped and
in the meanwhile packets in the queue are dequeued. Since Pm does not change until the link
is idle, the queue length shrinks to zero gradually. The queue length at t=48s is 0. After that,
the Pm is decreased by BLUE. Then incoming packets could get a chance to enter queue, and
the actual queue length will gradually increase from zero accordingly.

4.3 SFB
(1) Basic SFB characteristics:

Figure 9. SFB queue length for TCP flows Figure 10. SFB queue length for TCP and UDP flows

Although SFB is able to accurately identify and rate-limit a single non-responsive flow
without impacting the performance of any of the individual TCP flows, as the number of non-
responsive flows increases, the number of bins which become “polluted” or have Pm values
of 1 increases. Consequently, the probability that a responsive flow becomes misclassified
increases. To overcame this problem, the moving hash functions was implemented, i.e. by
changing the hash function, responsive TCP flows that happen to map into polluted bins will
potentially be remapped into at least one unpolluted bin. However, in this case, non-

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 14

responsive flows can temporarily consume more bandwidth than their fair share. To remedy
this, two set of hash functions are used to remedy this [5].

 As one set of bins is being used for queue management, a second set of bins using the
next set of hash functions can be warmed up. In this case, any time a flow is classified as non-
responsive, it is hashed using the second set of hash functions and the marking probabilities
of the corresponding bins in the warm-up set are updated. When the hash functions are
switched, the bins which have been warmed up are then used. Consequently, non-responsive
flows are rate-limited right from the beginning. Figure 9 and 10 show the typical performance
of SFB with TCP and UDP flows. The two simulation settings are the same as that in BLUE
except the buffer size of bottleneck link is set as small as 150KB.

Figure 9 shows the TCP flow queue length of the bottleneck link when there is no UDP
flow. In this case, the 49 TCP flows’ throughput is 0.94Mbps. While Figure 10 shows the
case when a 40Mbps UDP flow joins. In this case, the UDP flow’s throughput is only 0.026
Mbps while the 49 TCP flows’ throughput is still quite large which consumes 0.925Mbps
bandwidth of the bottleneck link. The UDP queue length is kept very small (about 4-5KB) all
the time. So we could see that due to effect of SFB’s double buffered moving hash, those non-
responsive flows are effectively detected and rate-limited by SFB.

(a) Large Boxtime (b) Small Boxtime

Figure 11. Impact of Boxtime on average queue sizes of TCP and UDP flows

(a) Unfairness of UDP flows when rate-limited (b) Fairness of UDP flows when rate-limited

Figure 12. Throughput of flows

 (2) Improving the fairness of UDP flows:

In SFB, all the non-responsive flows are treated as a whole. How much bandwidth those non-
responsive flows could take depends mainly on the parameter Boxtime. The Boxtime is the
time interval in which no packets from non-responsive flows can enter the queue. When a

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 15

packet from a UDP flow comes, if it is detected as a packet from a non-responsive flow, SFB
will compare the current time with the most recent time when a packet from any non-
responsive flows enqueued. If the time interval of these two events is greater than the
Boxtime, the packet will be enqeued. Otherwise, it will be dropped. If it is enqueued, the
current time is recorded for the next compare. By this way, Boxtime indirectly controls how
much bandwidth those non-responsive flows could take. Figure 11 (a) and Figure 11 (b)
illustrate the impact of Boxtime on the average queue size of TCP and UDP flows. In these
simulations, the parameter setting is the same as the simulations illustrated by Figure 9 and
Figure 10 except the value for Boxtime. The average queue sizes of TCP and UDP flows with
a large Boxtime (0.5s) are illustrated in Figure 11 (a). Since large Boxtime means that non-
responsive flows can only achieve a low throughput, the average queue length of those UDP
flows is very small in Figure 11(a). In this case, the UDP flow’s throughput is 0.013 Mbps,
while the throughput of TCP flows is as large as 0.926Mbps. On the contrary, if the value of
Boxtime is set small, the average queue length of those UDP flows is quite large as illustrated
in Figure 11(b) when Boxtime is equal to 0.02 seconds. It is reasonable for the small value of
Boxtime leads to a high throughput for those Non-responsive flows. In this case, the
throughput of UDP flow is 0.27Mbps while the throughput of those TCP flows is
0.66Mbps.Since Boxtime is a static parameter which can only be set manually and is hard to
configure automatically, the suitable value of Boxtime in one case might not apply to other
cases. This is the main drawback of SFB.

Even worse, this rate-limited scheme can’t guarantee fairness among UDP flows all the
time. Figure 12(a) illustrates this case, where 5 UDP flows with sending rate 4Mbps and 10
TCP flows compete the 1Mbps bottleneck link in our standard scenario. One UDP flow (flow
id 0) consumes more bandwidth than other UDP flows (flow id 1-4), although the fairness
among TCP flows (flow id 5-14) is obvious. To enhance the fairness among UDP flows, the
method we proposed is to make Boxtime a bit randomized. Figure 12(b) shows the throughput
of TCP flows and UDP flows after Boxtime is randomized. The fairness among the UDP
flows is improved. However, this method only improves the fairness of none-responsive
flows when they are rate-limited to a fixed amount of bandwidth across the bottleneck.
Sometimes, it is reasonable to rate-limit non-responsive flows to a fair share of the link’s
capacity. As suggested by [5], this could be acheived by estimating both the number of non-
responsive flows and the total number of flows going through the bottleneck link.

4.4 CHOKe
(1) Basic CHOKe characteristics:

Here we want to manifest the effect of CHOKe specific parameters. Our simulation setting is
the same as that in section 3. That is, we use 10 TCP flows, 1 UDP flow, queue buffer size =
150 packets, minth = 50, maxth = 100. Figure 13 and Figure 14 illustrate the performance of M-
CHOKe and A-CHOKe with different parameters setting (cand_num_ and
interval_num_). From these two figures we can see increased
cand_num_/interval_num_ will effectively increase the penalization for UDP flows.
This effect is most distinct when their values are small (for example, when cand_num_
changes from 1 to 2, interval_num_ changes from 1 to 5).

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 16

0

0.05

0.1

0.15

0.2

0.25

1 2 5 10 15

U
D
P
 F
lo
w
 T
h
ro
u
g
hp
u
t

(M
b
p
s)

Candidate Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 1 .6 1 0.8

U
D
P
Fl
o
w
Th
ro
u
g
h
pu
t

(M
b
p
s)

UDP rate (Mbps)

num = 1

num = 5

num = 10

num = 15

Figure 13. Effect of cand_num_ in M-CHOKe. Figure 14. Effect of interval_num_ in A-CHOKe

(2) Fairness of CHOKe

This simulation is to illustrate the fairness of CHOKe in managing different types of flows,
comparing with RED. Simulation setting is the same as section 3. Here, we use A-CHOKe
with interval_num_ = 5. From Figure 15 we could see, when UDP rate is under the bottle
link bandwidth, the performances of CHOKe and RED are very similar. When UDP rate
superceeds the bottle link bandwidth, CHOKe could effectively penalize the UDP flow to
keep the total queue size around minth, and enable TCP flows to get high throughput (data not
shown). Although RED keeps the queue size below maxth most of the time, UDP rate is so
high that most of queue buffer is occupied by UDP flow, which makes TCP flows throughput
very low, which is the result of that RED does not distinguish different types of flows. Figure
15 tells that CHOKe could achieve much better fairness than RED.

0

20
40

60
80

100

120

0.1 0.2 0.4 0.8 1 2 4 8

Q
u
eu
e
 S
iz
e
(p
a
ck
et
)

UDP rate (Mbps)

RED UDP flows queue size

RED TCP flows queue size

CHOKe UDP flows queue size

CHOKe TCP flows queue size

Figure 15. TCP/UDP queue size in RED and CHOKe

(3) Effect of different number TCP and UDP flows

CHOKe can adapt to the change of the number of TCP and UDP flows. The simulation
setting is the same as above, except that we change the number of TCP (m) and UDP (n)
flows, with (m, n) = (1, 1), (10, 1) and (10, 5). From Figure 16a, we can see the more TCP
flows, the more penalty UDP flow(s) get. It is because, with the increase of number of TCP
flows, it will be less probable for the selected packet to match with the incoming TCP packet,
that is, dropping of TCP packets by CHOKe decreases, correspondingly increase the
throughput of TCP flows. This result could also be confirmed by the queue buffer occupation
analysis (Figure 16b).

Increasing the number of UDP flows has similar effect as increasing the number of TCP
flows. With more UDP flows, the percentage of UDP packets in the incoming packets will
increase, which will decrease the probability to drop TCP packets. Another result is that UDP
throughput decreases with increasing of UDP rate, which has been discussed in section 3.4.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 17

On the other hand, RED will not differentiate UDP flow and TCP flow. Consequently, the
throughputs have no distinct difference with the change of the number of TCP flows and UDP
flows (Figure 16c, 16d).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.4 0.8 1 2 4 8

U
D
P
 T
hr
ou
g
h
p
u
t (
M
bp
s)

UDP rate (Mbps)

1 TCP, 1 UDP

10 TCP, 1 UDP

10 TCP, 5 UDP

0

10

20

30

40

50

60

70

0.1 0.2 0.4 0.8 1 2 4 8

U
D
P
Q
u
eu
e
 S
iz
e
 (p
ac
ke
t)

UDP rate (Mbps)

1 TCP, 1 UDP

10 TCP, 1 UDP

10 TCP, 5 UDP

(a) Throughput by CHOKe (b) Queue size by CHOKe

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.4 0.8 1 2 4 8

U
D
P
T
hr
ou
g
h
p
ut
 (M
b
p
s)

UDP rate (Mbps)

1 TCP, 1 UDP

10 TCP, 1 UDP

10 TCP, 5 UDP

0

20

40

60

80

100

120

0.1 0.2 0.4 0.8 1 2 4 8

U
D
P
Q
u
eu
e
S
iz
e
(p
ac
k
et
)

UDP rate (Mbps)

1 TCP, 1 UDP

10 TCP, 1 UDP

10 TCP, 5 UDP

(c) Throughput by RED (d) Queue size by RED

Figure 16. Interaction of different number of TCP flows and UDP flows

(4) RED related parameters

We have done some simulations trying to illustrate the effect of RED related parameters on
the performance of CHOKe. We find the results comply with the characteristics illustrated by
the above data, which is quite predictable. For example, the throughput and queue size
occupied by CHOKe changes proportionally with the setting of minth and maxth. And the
effect of other parameters could also be explained by the analysis in [3].

5. CONCLUSION
This paper compared several queue management algorithms (RED, FRED, BLUE, SFB,
CHOKe) based on simulation results. We have presented our simulation setting, comparison
result and algorithm characteristics. It’s still hard to conclude which algorithm is better in all
aspects than another, especially considering the deployment complexity. But the major trends
are: (1) all these algorithms provide high link utilization, (2) RED and BLUE don’t identify
and penalize non-responsive flow, while the other three algorithms maintains fair sharing
among different traffic flows, (3) the fairness is achieved using different methods, FRED
record per-active-flow information, SFB statistically multiplex buffers to bins, but needs to be
reconfigured with large number of non-responsive flows, CHOKe correlates dropping rate
with corresponding flow’s incoming rate, and is able to penalize large number of non-

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 18

responsive flows adaptively, (4) all of the algorithms has computation overhead per incoming
packet, their space requirements are different. The following table summaries our evaluation
results:

Algorithm Link
Utilization

Fairness Space Requirement Per-flow State
Information

Configuration
Complexity

RED Good Unfair Large No Hard
FRED Good Fair Small Yes Easy (Adaptive)
BLUE Good Unfair Small No Easy
SFB Good Fair Large No Hard

CHOKe Good Fair Small No Easy (Adaptive)

REFERENCES
[1] Saad Biaz and Nitin Vaidya, “”De-randomizing” Congestion Losses to Improve TCP Performance

over Wired-Wireless Networks” Proc. of IEEE Global Telecommun. Conf.

[2] S. Floyd and V. Jacobson, ”Random early detection gateways for congestion avoidance”,

IEEE/ACMTransactions on Networking, vol. 1, pp 397-413, Aug, 1993.

[3] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan, and Randy Katz. “Eectiveness of

loss labeling in improving TCP performance in wired/wireless networks. ” In Proceedings of

ICNP’2002: The 10th IEEE International Conference on Network Protocols, Paris, France, November

2002.

[4] L. Brakmo and S. O’Malley, ”TCP-Vegas : New techniques for congestion detection and

avoidance,”, In ACM SIGCOMM’94, pp. 24-35, OCT, 1994.

[5] V.Jacobson, ”congestion Avoidance and Control”, Proc. SIGGCOMM,pp. 314-329, Aug, 1998.

[6] R.Yavatkar and N.Bhagwat, “Improving End-to-End Performance of TCP over Mobile

Internetworks” Proc of Worjshop on Mobile Computing Systems and Applications, Dec., 1994.

[7] H. balakrishnan, S. Seshan, E. Amir, R.H. Katz,

”Improving TCP/IP Performance over Wireless Networks,” Proc. 1st ACM Conf. on Mobile

Computing and Networking, November 1995.

[8] Sally. Floyd, Steve McCanne “Network Simulator,” LBNL public domain software. Available via

ftp from frp.ee.lbl.gov.

[9] Sally Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Communication Review,

vol. 24, No. 5, October 1994.

[10] B. Bakshi, P. Krishna, N. Vaida, and D. Pradhan, “Improving performance of TCP over wireless

networks,” in proceedings of 17th Int. Conf. on Distributed Computing Systems. pp. 693-708, May.

1997.

[11] ISI, ”ns2: network simulator” http: www.isi.edu/nsnam/ns

[12] V. Jacobson, “Modified TCP congestion avoidance algorithm,” Apr 1990. mailing list,

end2endinterst@isi.edu.

 [13]. Dr. T. Bhaskar Reddy , Ali Ahammed ,and Reshma banu, “Performance Comparison ofActive

Queue Management Techniques”in IJCSNS VOL.9 No.2, February 2009,pp405-408.

������������	
������	
�
��������
��������
�
��������������
��������
��	���
�����
� ����
� !

 19

[14]. T. Bhaskar Reddy and Ali Ahammed”Performance Comparison of Active Queue Management

Techniques for TCP Apllications ’’ in JCS Journal of Computer Science 4 (12): 1020-1023, 2008

Authors:

Ali Ahammed: Received the B.Edegree in Electronics and Communication from
Bangalore University ,Bangalore,India, in 2001 and M.Tech from Visvesvaraya
Technological University,Belgaum, India in 2004. Currently Pursuing Ph.D in the fileld
of”Computer Networks” from Sri krishnadevaraya university ,Anantapur. India.

Reshma Banu: Received the B.Edegree in Computer Science and Engg. from Kuvempu
University, India, in 2001 and M.Tech from Visvesvaraya Technological University,
Belgaum, India in 2004. Currently Pursuing Ph.D in the fileld of”Computer Networks”
from Sri Krishnadevaraya university , Anantapur. India.

