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ABSTRACT 

Optimizing the input covariance matrix of a multiple-antenna transmit system with partial channel-

structure feedback is an important issue to fully exploit the channel capacity. Efficient design of the 

optimal input covariance matrix, however, remains unavailable although its eigenvector structure was 

clearly revealed in a recent publication. In this paper, we obtain an explicit derivative function forming a 

solid basis for optimizing the optimal input covariance matrix. This new derivative expression enables us 

to further develop an efficient iterative algorithm for determining the optimal eigenvalues. The technique 

is illustrated through numerical examples. 
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1. INTRODUCTION 

In communication theory, MIMO refers to radio links with multiple antennas at the transmitter 

and the receiver side [1]–[8]. Given multiple antennas, the spatial dimension can be exploited to 

improve the performance of the wireless link. The performance is often measured as the average 

bit rate (bit/s) the wireless link can provide or as the average bit error rate (BER). Which one 

has most importance depends on the application. Given a MIMO channel, duplex method and a 

transmission bandwidth, the system can be categorized as Flat or frequency selective fading and 

with full, limited or without transmitter channel state information (CSI) [9]–[14].  

In a TDD system with a duplex time less than the coherence time of the channel, full CSI is 

available at the transmitter, since then, the channel is reciprocal. In FDD systems, there 

commonly exists a feedback channel from the receiver to the transmitter that provides the 

transmitter with some partial CSI. This could be information of which subgroup of antennas to 

be used or which eigen-mode of the channel that is strongest. It is also possible to achieve a 

highly robust wireless link without any CSI at the transmitter, by using transmit diversity. 

Diversity can be achieved through so called space-time codes, like the Alamouti code for two 

transmit antennas and high bit rates is achieved by spatial multiplexing systems, such as the 

pioneer system from Bell Labs abbreviated as BLAST [15], [16].  

If a broadband wireless connection is desired, the symbol rate must be increased further which 

at some point will lead to a frequency selective channel. Then, there are two ways to go, either 

we employ pre- or post-equalization of the channel or we divide the channel into many 

narrowband flat fading sub-channels, a technique utilized by OFDM, and transmit our data on 

these sub streams, without the need for channel equalization. Hence, it is always possible to 

convert a frequency selective channel to many flat fading channels using OFDM and apply the 

developed flat fading MIMO signalling techniques to each of these sub-channels. 
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When full CSI is available at the transmitter, it is possible to transmit data on the MIMO 

channel eigen-modes [17], [18]. A MIMO system with N transmit antennas and M receive 

antennas has min(N,M) eigen-modes. The gain of these eigen-modes is proportional to the 

singular values of the MIMO channel, so they have disparate power. Recently, there have been 

some profound contributions in delay-limited channels assuming the use of causal CSIT. In 

[19], Negi and Cioffi investigated the optimal power control for minimizing the outage 

probability using a dynamic programming (DP) approach with certain power constraints. 

Similar methodology was also proposed in [20] for a two user downlink channel for expected 

capacity maximization with a short-term power constraint. Furthermore, in [21], Berry and 

Gallager looked into the delay-constrained problem taking into account the size of the buffer. 

Most recently in [22], an algorithm that finds the optimal power allocation over the blocks to 

minimize the overall transmit power while constraining an upper bound of the outage 

probability constraint was proposed. Unfortunately, the assumption of having perfect CSIT is 

questionable, and the required amount of channel feedback may not justify the diversity gain 

obtained from the intelligent power control. Sometimes, only limited feedback, for example, 

statistical information of the channel, is available. 

It is well known that appropriately exploiting partial channel knowledge at the transmitter can 

increase the information throughput of a wireless multiple-antenna system with either a MIMO 

[26], [27] or a multi-input single-output(MISO) [23]–[25] configuration. The case of MISO in 

correlated Rayleigh fading was recently tackled in [23], [25] aiming to obtain the optimal input 

covariance matrix for which the channel capacity is maximized. An important finding in [23] is 

that the optimal input covariance matrix should have the same eigenvectors as the channel 

covariance matrix, suggesting that independent Gaussian signals be transmitted along the 

direction defined by the eigenvectors of the channel covariance matrix. This finding was shortly 

extended to the general case with MIMO antennas [24], [34], [35]. 

In all aforementioned studies, however, the determination of the eigen-values for the optimal 

input covariance matrix relies on numerical search, directly based on the original objective 

function for optimization except the insertion of the optimal eigenvectors. The gradient descent 

method is usually used for iterative search. The drawback is inaccuracy on one hand and time 

consuming on the other, thereby calling for more feasible theoretic results to be used in the 

system design. The purpose of this paper is two-fold: to establish a simple relation that defines 

the optimal eigenvalues, and to derive an efficient algorithm for their evaluation. 

The rest of this paper is organized as follows. In Section 2, 3, 4 and 5, we present our system 

model and the detailed procedure of our proposed algorithm to determine the structure of the 

optimum input covariance matrix. In Section 6, we present some numerical results which reveal 

the truth behind the selection of optimum input covariance matrix and also illustrate the 

efficiency of our algorithm. Finally, Section 7 contains some concluding remarks. 

 

As a convention in this paper, we will use superscript † to signify conjugate transposition, and 

use E[·], diag{· · · } and tr(·) to denote expectation,the diagonal matrix and the trace of a matrix, 

respectively. The notation x ∼ CNm(μ,R) implies that the m-by-1 vector x is complex Gaussian 

distributed with mean μ and covariance matrix R. For the case of m = 1, the subscript m will be 

dropped for simplicity. 

 

2. FORMULATION 

Consider a wireless MISO system with m transmit antennas and one receive antenna. Let x and 
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h denote the m× 1 transmitted signal vector and the channel gains linking the transmit antennas 

to the receiver, respectively, so that the received signal y can be written as 

   
where n  is additive white Gaussian noise with distribution 

   
and for Rayleigh fading, we have 

 

 
 

Suppose that partial channel information is fed back to the receiver, so that the receiver knows 

the Gaussianity of h with zero mean and covariance matrix Rh. According to Shannon, the 

optimal distribution of x that maximizes the channel capacity is the joint Gaussian distribution 

taking the form of 

 

 
 

The question is for given partial channel information Rh at the receiver, how to determine the 

optimal covariance structure Q subject to the constraint of a constant transmitted power, i.e., 

 

 
 

such that 

   
is maximized. The authors of [1] have found that the optimal Q should have the same unitary 

matrix of eigenvectors as that of Rh. Efficient techniques, however, are not available for 

determining the eigenvalues of the optimal Q except for numerical search. 

 

In this paper, we will employ appropriate mathematical skills to directly obtain the derivative of C with respect to Q whereby the complete structure of the optimal Q can be determined, and an 

efficient algorithm is established. In particular, we use the Lagrange multipliers to form a new 

objective function, as shown by 

   
where λ is a constant. The task is to find Q that maximizes this objective function. 
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3. EQUATIONS FOR OPTIMAL Q 

To maximize J(Q), we take its derivative with respect to Q yielding 

   
The second term on the right is simply equal to the identity matrix I; namely, 

   
We therefore focus on the first term. Using the rule (10.17) for matrix differentiation [29], we 

obtain 

 

  
On the first line, we have changed the order of expectation and differentiation since both are 

linear operators. The expectation is taken on the random vector h. As we can see on the second 

line, however, the function inside the expectation operator contains h in both of its denominator 

and numerator. It is nearly impossible to use brute force to obtain the expected value. We 

therefore consider, instead, the use of the identity 

 

 
 

to convert the denominator into an exponential whereby the expectation can be performed. 

The result is shown in order. 

 

The expectation on the last line is essential to determine the characteristic function of the 

quadratic form 
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in Gaussian vector, which is known to be [30] 

   
Insert (14) into (12) yielding 

 

  
which, after invoking the formula for matrix differentiation [29] 

   
and simplifying, produces 

 

  
By inserting (17) into (8) and setting the derivative to zero, we obtain the simultaneous 

Equations 

 

 
 

where A is a matrix function of Q defined by 

 

 
 

The solution to (18) defines the optimal Q. 

 

4. OPTIMAL SOLUTION 

Let U1 denote the matrix of eigenvectors of Rh and let 

     
 

denote its corresponding matrix of eigenvalues. In a similar manner, we define the eigen 
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structure of Q by U2 and ΩΩΩΩ. Hence, we can write 

 

where 

         
From (18), it follows that the optimal Q must be chosen such that A is, up to a factor, the 

identity matrix. This requires, in turn, that all the eigenvalues of A be identical. The optimal Q 

that meets this requirement implies that 

 

where for i = 1, … ,m, 

   
These results can be easily verified if we use the relation 

 

 
 

to represent (18) as 

 

 
 

It requires that 

   
leading to the result shown in the second line of (23). Besides revealing the same eigenvectors 

of Q as described in [23], our results also establish basic relation among the eigenvalues of Q. 

The relation among {yi}, plus the power constraint, defines the following simultaneous equations 

 

 
which is a set of nonlinear equations in the eigenvalues {βi} of the optimal Q. 
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5. EFFICIENT ALGORITHM 

In this section, we develop an iterative algorithm for solving the nonlinear equations in (28), 

based on the Newton-Raphson method [31]. The recursive algorithm so obtained is capable to 

rapidly approach the optimal solution, at the rate of geometric convergence. Define vectors 

 

 
where 

 

  
Here, the superscript k is used to signify the results obtained at the kth iteration. We determine 

the Jacobian matrix [J(βk)] by taking the derivatives of {fi} with respect to {βj}. The result is 

given by 

 

 
 

where 

 

 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.5, Sep 2011 

156 

 

 

 
 

with η denoting 

   
The solution to the eigenvalues of the optimal Q can be obtained by performing the following 

iteration: 

   
which usually converges in a few steps. 

 
 

Let us summarize the procedure for the determination of Q. 

a) Eigen decompose Rh to obtain its matrix of eigenvector U and eigenvalues {α1, … , αm}. 
b) Use the values of {αi}, along with {βi k} obtained at each iteration, to (24) and (31) to 

determine {yi} and {fi}. 
c) Calculate the Jacobian matrix using (32). 

d) Update the eigenvalue using (35). 
 

Once we obtain the optimal eigenvalues, we can use it, along with the optimal eigenvectors to 

determine the maximum average capacity using (6). This type calculation is needed in the next 

section for numerical illustration. To simplify the evaluation, it is easy to show that (6) is 

statistically equivalent to 
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Where 

   
are independent chi-square variables with 2 degrees of freedom. The distribution function of γi 
can be explicitly written as 

  
6. NUMERICAL RESULTS 

To further reveal the truth behind the selection of optimum input covariance matrix, we take two  

 
 

and three transmit elements for example respectively. Here we suppose σn2
 = 1, P = 10, 

therefore SNR = 10log P/σn2 = 10dB. 

 

When m = 2, by our proposed optimization method, we have the following results: When α1 = α
2, β1 = β2 = 0.5P. Whenα1= 2α2, β1 = 0.71P, β2 = 0.29P. Whenα1 = 3α2, β1 = 0.82P, β2 = 

0.18P. Whenα1 = 4α2, β1 = 0.9P, β2 = 0.1P. Whenα1= 5α2, β1 = 0.95P, β2 = 0.05P. Whenα1> 
5.93α2, β1 = P, β2 = 0. Similarly, when m = 3, by our proposed optimization method, we have: 

Whenα1=α2 = α3, β1 = β2 = β3 = P/3 .Whenα1 = 2α2 = 2α3, β1 = 0.648P, β2 =β3 = 0.176P. 

Whenα1=α2 = 2α3, β1 = β2 = 0.488P, β3 =  

 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.5, Sep 2011 

158 

 

 

 
 

0.024P. Whenα1 = 3α2 = 3α3, β1 = 0.8P, β2 = β3 = 0.1P.Whenα1 = 1.5α2 = 3α3, β1 = 0.62P, β2 

= 0.38P, β3 = 0. Whenα1 = 8α2 = 8α3, β1 = P, β2 = β3 = 0. Table 1 and 2 illustrate this. 

 

From the results, we can see that when the channel covariance matrix has a moderate eigenvalue 

spread, the eigenvectors corresponding to larger eigenvalues of channel covariance matrix 

should receive more power. Otherwise, when some eigenvalues are much smaller than the other 

eigenvalues, the optimum transmit strategy is to distribute all the power proportionally along the 

eigenvectors corresponding to the larger eigenvalues. In particular, when one of the eigenvalues 

is much larger than other ones, the best transmit strategy is to put all the power along the 

eigenvector corresponding to this largest eigenvalue. 

 

In order to examine the accuracy of our method proposed above, we compare the theoretical 

capacity achieved by our method with the simulation capacity. For the theoretical capacity, we 

substitute αi , which is supposed to have been known from the feedback, and βi, which is 

derived by our proposed algorithm, to (25), (26). For the simulation capacity, since the 

eigenvectors of the optimum covariance matrix Q, by proposition 1, coincide with the 

eigenvectors of Rh, without loss of generality, the result is based on Monte Carlo calculation by 

using (26). For each value of SNR, the corresponding capacity is defined to be the largest E[C]  

 
 

when βi takes all the values from 0 to P with step length 0.01P and each value of E[C] is 

obtained by averaging over 1000 independent computer trials. 

 

From figure 1, 2, 3, you can see the capacity achieved by our proposed algorithm is very close 

to the simulation capacity result, which therefore illustrates the high accuracy of the algorithm. 

 

7. CONCLUSIONS 

In this paper, we propose an efficient algorithm which combines Lagrange multiplier, matrix 

differentiation and recursive iteration for searching the optimal input covariance matrix 
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maximizing the MISO channel capacity. By our method, once we know the channel covariance 

matrix Rh from feedback, we could completely find out all the eigenvalues of the optimum 

covariance matrix Q of input distribution and thus determine the exact structure of the optimum  

Q. Based on our algorithm, we calculate the eigenvalues of the optimum input covariance 

matrix for two and three transmit elements as example and find the general rule that when the 

channel covariance matrix Rh has a moderate eigenvalue spread, the eigenvector of channel 

covariance matrix Rh corresponding to larger eigenvalue should receive more power. However, 

when some eigenvalues are much smaller than the other eigenvalues, the optimum transmit 

strategy is to distribute all the power proportionally along the eigenvectors corresponding to the 

larger eigenvalues. Finally, to examine the accuracy of our method, we compare the theoretical 

capacity achieved by our proposed algorithm with the simulation capacity and good agreement 

is observed. 
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