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ABSTRACT 

This paper introduces a novel binary, long double error correcting, systematic code (8 2 5) that can 

detect and correct errors up to two bits in the received vector using simple concept of syndrome 

decoding. The motivation behind the construction of this code is the idea to achieve 100% error 

correction on the receiver side and to use the encoder/decoder that is simpler than the existing double 

error correcting codes. By 100% correction we mean that when the two bits of information (k=2) is 

transmitted simultaneously over the noisy channel and if the two bits are in the error, in the received 

vector, then this code can detect and correct errors up to two bits thus recovering both the two bits of 

information. We show that to achieve this we need to choose long code length, maximum of 8 bits (n=8). 

We present a generator matrix and a parity check matrix to achieve required Hamming distance by using 

the concept of long code. The paper also presents the performance bounds satisfied by the said code.  
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1. INTRODUCTION 

The theory of linear block codes is well established since many years. In 1948 Shannon's work 

showed that any communication channel could be characterized by a capacity at which 

information could be reliably transmitted [1]. In 1950, Hamming introduced a single error 

correcting and double error detecting codes with its geometrical model [2] whereas just before 

Hamming, Golay had introduced (23, 12) triple error correcting perfect code. MacDonald in [3] 

derives an upper bound on minimum distance of a linear block code. Cyclic codes using 

polynomials were redefined and described by Peterson for error detection in [4]. The papers 

[5][6] review and highlight the important contributions of different scientist to the coding theory 

for the period of almost fifty years. Paper [4] includes the table indicating Shannon limit on 

Eb/No for the AWGN channel. According to Shannon to achieve reasonable BER, at ½ code 

rate EB/No required is 0.2 dB and as the code rate approaches to zero minimum Eb/No required 

is -1.6 dB. So far many different and more effective error correcting codes have been invented 

by researchers. In [7] author derives the necessary conditions for existence of e-error correcting 

code over GF (q) with word length n and concludes that Golay (23,12) is the only nontrivial 

binary perfect 3-error correcting code over any GF(q) and no other perfect codes exists except 

those invented by Hamming and Golay. Number of double error correcting BCH codes are 

listed and permutation decoding method for codes with code rates (k/n)>=1/2 is presented in [8]. 

Computer results on the minimum distance of some BCH codes are listed down in [9]. 

Construction of long codes, a class of codes derived from algebraic plane curves and its 

decoding is presented by Justesen in [10]. Similarly updated table of collection of lower and 

upper bounds for dmax (n, k), i.e. maximum possible minimum distance of a binary linear code, 

of code word length n and dimension k, has been given in [11]. The utility of different types of 

linear codes in communication over power limited and bandwidth limited channels is discussed 

in [12]. For power limited channels concatenated codes are more suitable with inner code as 

short length convolution code and outer code as long length, simple, high rate Reed Solomon 

code. A systematic quasi-cyclic code (16, 8) for computer memory system which corrects 

double errors and detects triple errors has been given in [13]. It also gives encoding and 
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decoding method for the same and also presents a quasi-cyclic code (32, 16) for triple error 

correction.The article given in [14] reformulates Shannon's sphere-packing bound in a 

normalized form conducive to analyzing the relative performance of families of turbo codes. In 

[15] Author shows that the longer the information block size, better the performance of long 

turbo codes. It shows that long practical codes can closely approach the theoretical limits on 

code performance and presents error bounds on long turbo code. In [16] the decoding method 

for the linear block codes based on multiple information sets and ordered statistics has been 

presented by Shu lin. It is more effective for long codes with code rate less than ½. In [17] 

Berrou introduces long codes, a new family of  convolution code called turbo codes which are 

derived from a particular concatenation of two  recursive  systematic codes linked together by 

non uniform interleaving to achieve near optimum performance. All these and many other 

existing codes give the efficient coding for partial correction of information bits and most of 

them assume that the minimum number of information bits to be transmitted should be at least 

three (k=3) for double error correction. E.g. Golay (23, 12) code corrects 3 bit errors in 12 

information bits or (16, 8) code in [13] corrects 2 errors in 8 information bits. Such types of 

codes have code rate ≥  ½ to get optimum transmission rates. The table given in [11] indicates, 

for k = 2, code word length n should be 8 to achieve min Hamming distance of 5. Practically (8 

2 5) code is not available.  Most of the (double error correcting codes) have complicated 

decoding procedures.  

Consider a case wherein we transmit k information bits simultaneously. If all the k bits are in 

error on the receiver side and if we want to correct them, transmitted code word should have 

more redundant bits. This paper presents a simple long double error correcting (8 2 5) code 

based on syndrome decoding. The long code will consume more transmission bandwidth and 

the will be less efficient. However in power limited system such as Ultra wideband 

communication, bandwidth is abundant. UWB has wide applications in radar, sensor networks 

and indoor multimedia communication. UWB can also be used to communicate with sensors 

placed inside the human body for cure of certain diseases. In all these UWB applications, to 

improve the quality of wireless communication, we can take benefit of the long code presented 

here, for 100% error correction in wideband communication because the accuracy is an equal 

important criterion while assuring good quality of service in communication. The design of 

double error correcting long binary code presented here is for 2 bits of information (k=2). 

According to Hamming, the minimum distance required for double error correction is ‘5’. In 

this paper we evaluate the code length required to achieve a Hamming distance of ‘5’, when two 

information bits have to be transmitted. We show that a long codeword of 8 bits is needed to be 

transmitted in order to correct double error in two information bits and to achieve 100% error 

correction.  

2. EXISTENCE OF A LONG CODE AND RELATED WORK 

In an error correcting code the central concept is the notion of minimum distance. If a code can 

be constructed with the minimum distance of 2t+1 between two code words, then any number of 

errors per codeword which does not exceed t can be corrected. A linear block code C is 

generally specified as (n, k, d) code, where n= length of the code word, k= length of information 

bits and d is the minimum Hamming distance between any two code words [18][19]. Shannon 

showed that at any rate of information transmission up to the channel capacity, it should be 

possible to transfer information at error rates that can be reduced to any desired level. In [15] 

author shows that the practical codes such as, long turbo codes with code rates <½ can approach 

the theoretical limits on code (near Shannon limit) performance. The following figure 1 

indicates that the long codes can improve the performance of error correcting system [20].  
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Figure 1. Probability that the fraction of symbol is in error e/N in a block of length N exceeds ρ 

for Pe = 0.01 

The form of the curve in fig 1 suggested that if one has a scheme for correcting a fixed fraction 

t/n, then the error rate could be made arbitrarily small by simply choosing the block to be long 

enough [20]. Thus the results in fig 1 indicate the potential for performance improvement by 

increasing the block length. Here the loss of efficiency occurs because the relative number of 

useful messages that these schemes convey becomes vanishingly small. This might be tolerated 

in medical applications where accuracy plays important role.  

 

The development of turbo codes created a new interest in knowing how closely practical codes 

can approach the theoretical limits on code performance. Simulations performed in [23] show 

that turbo codes approach perfect ness closely (within 0.7 dB) and almost uniformly over a wide 

range of code rates and block sizes. Inspired by this near Shannon performance of some long 

codes, we came across an idea of correcting all the transmitted bits. In this paper we assume that 

two bits are transmitted simultaneously and corrected at the receiver.. The work presented in 

this paper is directly related to the Hamming codes of earlier days. For 1 bit correction the 

concept of repeated bit sequence was used then, where for “1” data bit “111” and for “0” data 

bit “000” was transmitted as repeated sequence. When we want to transmit two data bits 

simultaneously (e.g. as in 2-dimensional modulation scheme) and want to correct them all, there 

is no error correcting code existing for such a scheme as far as our knowledge is concerned. 

This paper attempts to devise such a code and is based on the concept of Hamming codes. 

2.1. Maximum Code Length 

In this section we find the maximum length required for double error correction long code, with 

100% error correcting capability. Consider (n, k, dmin) is a binary linear cyclic code C where n is 

the length of each codeword in the code, k is the dimension of the code and dmin is the minimum 

Hamming distance between any two code words. R= k/n, is the code rate. (n-k) indicates parity 

or redundant bits added to the information bits k. If t indicates the number of errors to be 

corrected then the minimum distance criteria is dmin ≥ 2t+1. According to theory, to design any 

linear block code, the code must satisfy Hamming bound given by the following eq. 1 along 

with the minimum distance criteria [18][19].  
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 indicates number of correctable error patterns in a given (n, k) code for t 

correctable errors.  

Suppose we have the problem defined as: Given that k=2 and t=2 determine code length n then 

consider the following cases. 

Case I: With t =2, required dmin ≥ 5, assuming code rate = R = ½ and k=2, n will be 4 and n-k 

will be 2. Now correctable error patterns will be 
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Thus at ½ code rate, with k = 2 and n = 4, it does not satisfy this Hamming bound. 

Case II: Decreasing the code rate R 3/1≤ , k=2 and n = 7, n-k will be 5. Correctable error 

patterns will be 
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This case does satisfy hamming bound but does not satisfy min distance criteria. 

Case III: Now if we choose R = ¼, n will be 8 and for t=2, Hamming bound will be satisfied as 

follows 
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Thus we decide that the maximum code length of ‘8’ is required to achieve Hamming distance 

of ‘5’, in order to correct two bit errors while transmitting two information bits (k=2). This code 

length n = 8 will guarantee us 100% error correction.  

3. DESIGN OF A LONG CODE 

3.1. Generator and Parity Matrix 

With length n=8, we cannot choose an nth root primitive polynomial of Galois field GF(7) to 

obtain generator polynomial g(x) for (8 2 5) code that we wish to design, but we can use the 

polynomials of field GF(15) to form g(x). Consider the generator polynomial g(x) of degree (n-

k) = 6 is derived from the primitive polynomials (x
2
+ x+1) and (x

4
+x

3
+x

2
+ x+1) of GF(15) as 

follows [18][19]. 

g(x)  = (x2+ x+1) (x4+x3+x2+ x+1) = (x6+x4+x3+x2+1)                    (2) 

g(x) =(g6x
6
+g5x

5
+g4x

4
+g3x

3
+g2x

2
+g1x+g0) 
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We know the parity matrix of above code is 
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The code (8 2 5) presented here is a systematic cyclic code and its hardware part, encoder and 

decoder can be implemented using shift registers. 

3.2. Encoding of a long code 

With code dimension k=2 we can transmit four types of messages (m = 00, 01, 10, 11) and 

corresponding code words are obtained using formula c = m ×  g(x) [18] [19] as shown below 
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3.2.1 Software implementation of encoder: 

MATLAB program for implementation of (8 2 5) code is given below. 

%Transmitter/encoder 

%----------------------- 

m=[0 1]; 

g=[1 0 1 1 1 0 1 0  ; 0 1 0 1 1 1 0 1];  %generator matrix 

c=m*g;   %codeword to be transmitted 

%---------------------------------------------------------------------------------  

3.2.2 Hardware implementation of encoder: 

The code presented here is a systematic cyclic code, its hardware part; encoder and decoder can 

be implemented using shift registers. We know that the generator matrix of the said code is 

given by 

g(x) = (1+x2+x3+x4+x6), where 

g0 =1, g1 =0, g2 =1, g3 =1, g4 =1, g5 =0, g6 = 1 

The encoder as shown in figure 2 uses six shift registers. The encoded message enters the 

encoder with MSB bit first. 
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Figure 2. Encoder for (8 2 5) long binary code 

3.3 Decoding of a Long Code: 

If c is the transmitted code vector, r is a received code vector with error, e is an error vector by 

which r differs from c, H is a parity check matrix and S is syndrome indicating the presence of 

error then the syndrome S is given as [19] [20], 

S = r × H T = (c + e) ×  H T = c H T + e H T = m× G× H T + e H T = 0 + e H T thus, 

    S = e×  H
 T

        (6) 

For this code, total of 36 error patterns per message (single bit error-8 and double bit error-28) 

can be received on the receiver side. This will give us 36 unique syndromes of six bits (n-k) 

long and will help us to find which one or two bits in the received vector are in error. 

Complimenting these located error bits will give us the correct transmitted code word which 

will be in systematic form. 

3.3.1 Software implementation of Syndrome Decoder: 

Matlab program for decoder: 

%Receiver/decoder 

%----------------------- 

r = [1 0 0 1 1 1 0 1];   % suppose the received vector with first two bits in error 
H_tr = [1 1 1 0 1 0; 0 1 1 1 0 1; 1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1];  

S = r*H_tr;   % H_tr  is transpose of parity check matrix 

if S == [1 0 0 1 1 1]  % syndrome for first two bits in error 

r (1) = not(r(1));   % compliment first bit 

r (2) = not(r(2));   % compliment second bit 

end 

r_corrected = r;   % received vector after correction 
 

3.3.2 Hardware implementation of decoder: 

The (8 2 5) code presented here has n-k = 6 parity bits, so its decoder will have 6 stages of shift 

registers as shown in figure 3.  

 

 

 

 

Figure 3. Syndrome decoder 
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Here the received codeword is fed at the left side (LSB bit entering first) of the decoder as 

shown in figure 3. The output of each shift register will contribute to syndrome. 

4. PERFORMANCE ANALYSIS OF (8, 2, 5) CODE  

4.1. Test of Linearity: 

The Code (8 2 5) presented here satisfies the following conditions of linearity [18][19] hence it 

is a linear code.  

• All zero word is always a codeword 

• Minimum weight of non-zero vector = minimum distance of the code = 5  

• Addition of two code words is a valid code word 

4.2. Performance Bounds: 

The Code (8 2 5) presented here satisfies the following performance bounds [19] [20] 

4.2.1. Hamming Bound:  

The Hamming bound being tighter for higher rates. 
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4.2.2. Gilbert-Varsharmov Bound: 

Gilbert bound gives an upper bound on selecting n-k. In this case the Gilbert bound is satisfied 

as follows. 
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4.2.3. Singleton Bound:  

This bound sets an upper bound to minimum distance between two code words. 

dmin ≤ n – k +1     (9) 

with dmin = 5 and n-k = 6, singleton bound is satisfied. 

4.2.4. Plotkin Bound:  

It sets an upper limit to dmin for fixed values of n and k. It tends however to set a tighter bound 

for the codes with lower code rate, the Hamming bound being tighter for higher rates. The 

Plotkin bound applies to linear codes and states that the minimum distance is at most equal to 

the average weight of all nonzero codewords 
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In a given code n = 8, k = 2, dmin = 5 so it satisfies the Plotkin bound as shown above. 

4.2.5. Griesmer Bound:  

The Griesmer bound is often tighter than the Plotkin bound, and its derivation leads to methods 

of constructing good codes. Let (n, k, d) represent the lowest possible value of length n for a 

linear code C of dimension k and minimum distance d. 
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Here n = 8 and hence it satisfies the Griesmer bound. 

5. ERROR DETECTING AND CORRECTING CAPABILITY: 

The linear binary code (8 2 5) can detect and correct all one bit and 2 bit errors. 

5.1. Minimum distance criteria:  

Given a block code C, its minimum Hamming distance, d min, is defined as the minimum 

Hamming distance among all possible distinct pairs of code words (e.g. v1, v2) in C, [18][19].  
 

 
{ ( ){ }21|2,1minmin
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vvvvdd H

Cvv
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∈

  (12) 

In order to compute the minimum distance d min of a block code C, in accordance with above 

equation 12, a total of 2k−1
(2

k
 − 1) distances between distinct pairs of code words are needed. 

The following table-1 shows the hamming distance between different code words of (8 2 5) 

code. Here minimum weight is equal to minimum distance of code C. 

Table 1. Hamming distance between different code vectors 

1011 1010 

0000 0000 

--------------

1011 1010 

1011 1010 

0101 1101 

--------------

111 0 0111 

1011 1010 

111 0 0111 

--------------

0101 1101 

0101 1101 

111 0 0111 

--------------  

1011 1010 

111 0 0111 

0000 0000 

--------------  

111 0 0111 

0101 1101 

0000 0000 

------------- 

0101 1101 

dmin = 5 dmin = 6 dmin = 5 dmin = 5 dmin = 6 dmin = 5 

 

5.2. Triangle inequality: 

It states that the code C is capable of correcting all error patterns of t or fewer errors. Let v and r 

be the transmitted and received vectors respectively and let w be any other code vector in C then 

The Hamming distances among v, r and w satisfy the triangle inequality:  
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d(v, r) + d(w, r) ≥ d(v, w)   (13) 

For a given block code, designed with generator matrix of equation 14, considering v = [10 11 

1010], r = [00 11 1010] and w = [01 01 1101], d(v, r) = 1, d(w, r) = 5 and d(v, w) = 6.  

Here d(v, r) + d(w, r) = d(v, w). Thus it satisfies the triangle inequality. 

5.3. Weight distribution W(C):  

The Weight distribution W(C) of an error correcting code C, is defined as the set of n + 1 

integers W(C) = {Ai , 0 ≤ i ≤ n} such that there are Ai code words of Hamming weight i in C, for 

i = 0, 1, . . . , n.  

For this code, the weight distribution will be as per table 2 

 

Table 2. Weight distribution of a new code 

i 0 1 2 3 4 5 6 7 8 

Ai 1 8 28 18 27 36 21 8 1 

 

5.4. Asymptotic Coding Gain (Ga):  

It is the gain that would be delivered if vanishingly small decoded error rates were required 

[19][20]. It is given by Ga=10 log[R(t+1)] Or Ga=10 log[R*dmin] 

If R = Coding gain=¼, t=2, dmin=5, then  

Ga= 10 log [3/4] = -1.249 dB 

Or Ga=10 log[Rd] =10 log [5/4] = 0.969 dB 

Thus asymptotic coding gain will be between -1.249 to 0.969 dB. 

6. Probabilities over BSC channel: 

6.1. Probability of Undetected error (Exact Value) over BSC channel:  

The probability of an undetected error over a BSC, denoted Pu(C), is the probability that the 

received word differs from the transmitted code word but the syndrome equals zero [18][19]. 

This probability is given by eq. 14. 
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Inserting values of Ai from weight distribution table 2 in eq. 14 we get, 

  

Pu (C) = 34*p5 (1 − p)3 + 15* p6 (1 − p)2 + 3* p7 (1 − p) (15) 

The following table 3 gives exact values of probability of undetected error according to eq. 15. 

Table 3. Probability of undetected error-Exact Value 

P 0.1 0.01 1.0e-003 1.0e-004 1.0e-005 

Pu (C) 2.60e-004 3.31e-009 3.39e-014 3.39e-019 3.39e-024 

 

6.2. Probability of Undetected error (Upper Bound) over BSC channel:  

The following eq. 16 gives upper bound on probability of undetected error over BSC channel. 
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The following table 4 gives Upper Bound values of probability of undetected error. 

Table 4. Probability of undetected error-Upper Bound 

P 0.1 0.01 1.0e-003 1.0e-004 1.0e-005 

Pu (C) 4.31e-004 5.46e-009 5.58e-014 5.59e-019 5.59e-024 

  

The following figure 4 plots the exact values and upper bound values of probability of 

undetected error over BSC channel. 
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Figure 4. Exact value and upper bound on the prob of undetected error Pu(C) for a (8 2 5) code 

Figure 4 indicates that the exact and upper bound values on the prob. of an undetected error over 

a BSC channel are same and negligible for the dual error correcting long code (8 2 5). 

6.3. Probability of Correct Decoding Pc(c) (Lower bound) over BSC channel: 
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The following table 5 gives Lower Bound values of probability of correct decoding. 

Table 5. Probability of correct decoding-Lower Bound 

P 0.1 0.01 1.0e-003 1.0e-004 1.0e-005 

Pc (C) 9.61e-01 9.99e-01 1.00e-00 1.00e-00 1.00e-00 
 

6.4. Probability of incorrect Decoding or Decoding error (Upper bound) over 

BSC channel: 

It is given as Pe(C) = 1 − Pc(C) [19] [20]. 

ini
t

i

e PP
i

n
CP

−

=

−







−≤ ∑ )1(1)(

0    (20)

 

The following table 6 gives Upper Bound values of probability of decoding error. 

Table 6. Probability of decoding error-Upper Bound 
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P 0.1 0.01 1.0e-003 1.0e-004 1.0e-005 

Pe (C) 3.81e-02 5.39e-05 5.58e-08 5.59e-11 5.55e-14 

 

Probability of incorrect decoding- Pe(c)

1.000E-14

1.000E-12

1.000E-10

1.000E-08

1.000E-06

1.000E-04

1.000E-02

1.000E+00

0.000010.00010.0010.010.11

P

P
e
 (

c
)

Upper bound on Pe(c)

 

Figure 5. Upper bound on the probability of decoding error Pe (C) for a binary code (8 2 5) 

Figure 5 indicates that the Pe(C), is negligible for the dual error correcting long code (8 2 5). 

7. CONCLUSIONS 

This paper has presented a new double error correcting long binary linear cyclic code (8 2 5) 

with code rate ¼. It can detect and correct single as well as double bit errors in the received 

codeword. Since transmitted codeword contains two information bits, double error correction by 

this code achieves 100% error correction. Near optimum performance of theoretical code can be 
achieved with this code using practically simple encoding and decoding procedure. This is done 

at the cost of transmission bandwidth but it could be a suitable method for sensitive applications 

in medical science where accuracy is important.  Wideband technologies such as UWB have 
abundant bandwidth; by using this error correcting method along with the wideband 

technologies can help us achieve reasonably good transmission rates. 
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