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ABSTRACT 

k-means has recently been recognized as one of the best algorithms for clustering unsupervised data. 

Since k-means depends mainly on distance calculation between all data points and the centers, the time 

cost will be high when the size of the dataset is large (for example more than 500millions of points). We 

propose a two stage algorithm to reduce the time cost of distance calculation for huge datasets. The first 

stage is a fast distance calculation using only a small portion of the data to produce the best possible 

location of the centers. The second stage is a slow distance calculation in which the initial centers used 

are taken from the first stage. The fast and slow stages represent the speed of the movement of the 

centers. In the slow stage, the whole dataset can be used to get the exact location of the centers. The time 

cost of the distance calculation for the fast stage is very low due to the small size of the training data 

chosen. The time cost of the distance calculation for the slow stage is also minimized due to small number 

of iterations. Different initial locations of the clusters have been used during the test of the proposed 

algorithms. For large datasets, experiments show that the 2-stage clustering method achieves better 

speed-up (1-9 times). 
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1. INTRODUCTION 

No theoretical research work available on the running time was required for the �-means to 

achieve its goals as mentioned by [1]. They researched the worst-case running time scenario as 

superpolynomial by improving the lower bound from Ω��� iterations to 2�	√��.  [9] has 

developed another method to reduce the number of iterations but it was not as fine-tuned as [1]. 

On the other hand [4] have proved that the number of iterations required by �-means is much 

less than the number of points. Moreover, [5] were unable to bound the running time of �-

means, but they proved that for every reclassified point one iteration is required. Then after 

����Δ�� iterations the convergence will be guaranteed. 

A group of researchers worked on choosing the best centers to avoid the problems of �-Means 

of either obtaining the non-optimal solutions or empty clusters generations. [3] worked on 

modifying the �-means to avoid the empty clusters. They moved the center of every cluster into 

new locations to ensure that there will be no empty clusters. The comparison between their 

modified �-means and the original �-means show that the number of iterations is higher with 

the modified �-means method. In case of the numerical examples which produce empty 

clusters, the proposed method cannot be compared with any other method since there is no 

modified �-means algorithm available to avoid the empty clusters. [6] on the other hand 

developed a procedure in which the centers have to pass a refinement stage to generate good 

starting points. [7] used genetically guided �-means where the possibility of empty clusters will 

be treated in the mutation stage. Another method of center initializing based on values of 

attributes of the dataset is proposed by [8]. The later proposed method creates a complex 

procedure which leads to be computationally expensive. 
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[2] on the other hand, developed a method to avoid unnecessary distance calculations by 

applying the triangle inequality in two different ways, and by keeping track of lower and upper 

bounds for distances between points and centers. This method is effective when the dimension 

is more than 1000 and also when the clusters are more than 20. They claimed that their method 

is many times faster than normal �-means method. In their method the number of distance 

calculations is � instead of ��� where � is the number of points and �� are the number of 

clusters and the number of iterations respectively. [9] In contrast, Hodgson used different 

triangular equality to achieve the goal, in which they reduced the number of distance 

calculations. 

2. THEORETICAL BACKGROUND AND THE PROPOSED METHOD 

Simple modifications of �-means clustering method have been proposed. The theoretical 

background of the proposed method is described below: 

The main idea behind �-means is to calculate the distance between the data point and the 

centers using the following formula: 

���� , ��� = [��� − �������� − ����]�/�                                    (1) 

Where � the Euclidean distances between the data point ��  at the cluster � and the initial 

centers are ���   
The points in one cluster are defined as: 

�!  for " = 1,2, … , � regarded as one cluster and � is the total number of points in that cluster. 

The ���  chosen randomly either from the dataset or arbitrarily. In our method we have used the 

random selection of the centers from the dataset to avoid wasting one more calculation 

(iteration). Any �-means clustering method depends on the number of clusters set at the 

beginning. There is no guarantee that the centers will move or converge to the mean points of 

the average of the cluster. This is one of the drawbacks of �-means. Also there is no guarantee 

that the convergence will happen to the local mean.  

Assume that %� is the set of & clusters to minimize the criteria '�. ; *� so that ���  converges to 

�� (the cluster centers): 

%�+{���, ���, … , ��� }               (2) 

where         '���, ��, … , �� ; *� = *�min�|�� − ��|��                   (3) 

where * is the probability distribution over the Euclidean space. 

If the 2� represents the entire dataset then the objective is to find a subset 23 of 2� such that 

*�23� ≤ *�2�� 

We assume that the data with one center is a stationary random sequence satisfying the 

following cumulative distribution sequence: 

567,6789,…,6:�;7,;789,…,;:� = 5678<,67898<,…,6:8<�;7,;789,…,;:�                  

(4) 

then the above sequence has one mean: 

=�>� = ?  (5) 

The process of clustering is equivalent to minimizing the Within-Cluster Sum of Squares for 

the, so called, fast stage: 

min@ A A B�C − DEFB
;G∈IJ

�J

�+�
 

                      

                           

(6) 

and for the so called, slow stage, as follows: 

min@ A A B�C − K3!B
;G∈IJ

�J

�+�
 

                      

                        

(7) 
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where K are the centers of the clusters which are equals to the centers of the previous stage.  

The within cluster sum of squares is divided into two parts corresponding to the fast and the 

slow stages of the clustering: 

L2MM = N O&��‖� − ?‖, ‖� − ?̅‖�R� +
�J

T
 

N O&��‖� − ?‖, ‖� − ?̅‖�R�
�

�J
 

    

(8) 

The centers of the slow stage start with ?� 

The following algorithm describes briefly the proposed procedure: 

Algorithm: 

Input: 2� , ?, UVW, 'E, '3 

Output: 2�with clusters 

2� = %UVW of 2� 

Select >� from 2� randomly 

While  'E ≤  YEF 

 For  & ← 1 [\ �3 

  Calculate the modified distance  
R���  , ��� = [��� − �������� − ����] 

  Find minimum of R  

  Assign the cluster number to point >� 
 End for 

 Calculate 'E 

End while 

Calculate the average of the calculated clusters to find new centers >� 

Use the whole dataset 2� 

While '3 ≤  Y3! 
 For  & ← 1 [\ � 

  Calculate the modified distance  
R���  , ��� = [��� − �������� − ����] 

  Find minimum of R  

  Assign the cluster number to point >� 
 End for 

 Calculate '3 

End while 

 

3. PERFORMANCE IMPROVEMENT 

The complexity of the �-means is �����where � is the number of clusters, � is the number 

of iteration required to get to the stopping criteria and � is the input patterns. For example if the 

data size is 1000 points, 4 clusters and it require 20 iterations to get the optimal locations of the 

centers. Then,�80,000�is the time complexity.  The time complexity in the proposed method 

has two folds, first is time complexity of the fast stage of clustering: 

	��E�E� where�E  is the number of data for the fast stage and �E is the iterations during the 

fast stage only. The second part of the time complexity is calculated according to the slow stage 

of clustering: ���3�� where �3 is the number of iterations during the slow stage. Assume 

that�E = 100  and �3 = 3 then the total time complexity is: 

	��E�E� + ���3��= �7200� + �8000�= �15200� 
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This will represent a reduction in the calculation time for the clustering of more than 5 times. 

However, if the data is bigger than the previous figure then the time reduction will be higher. 

For example if the data is 1Million the reduction will be approximately 10 times. This is quite 

well illustrated in the following diagram: 

 

 
 

Figure 1. Complexity measure of the k-means and the modified k-means with 100 samples 

 

The �E and �3 are the fast iterations and the slow iterations of the modified �-means. 

Respectively. The black graph in Fig. 1 is the time complexity of the normal �-means. Other 

graphs represent the complexity of the modified �-means. Therefore the higher the value of �3 

the more the graphs will approach the normal �-means properties. From the above graph it can 

be concluded that the lower values of �E the less time required to achieve total clustering. The 

more iterations, for the fast stage, the faster the algorithm works. However, the catch here is we 

cannot go very low with �E as the time of the clustering will approach the normal �-means. In 

other words the clustering procedure will produce blank clusters. The proper percentage would 

be 10% - 20%. The set up of the parameters of the red graph of the above diagram has a 

complexity of almost 5 times less than the normal �-means clustering. In the case of using 

higher number of data for the fast stage clustering, �E = 500, the complexity results will be 

skewed upwards as shown below: 
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Figure 2. Complexity measure of the k-means and the modified k-means with 500 samples 

 

The set up of the parameters of the red graph of the above diagram has complexity less than 2 

times than the normal �-means clustering. This indicates that the more the data chosen for the 

fast stage of clustering the less advantages of this method.  

 

4. ANALYSIS OF THE ALGORITHM  

To investigate the suitability of the proposed method we run the simulation for many different 

parameters. The parameters which have to be adjusted to get the best speed up values are: The 

data size, the dimension of the data, the number of clusters, the stopping criteria of the first 

clustering stage, the stopping criteria for the second clustering stage and the percentage of the 

data used for the 2-stage clustering. Another important consideration which has been taken into 

consideration is the use of the same program for running the normal k-means clustering and the 

2-stage clustering after feeding it with different centers and the use of part of the data. 

Furthermore, the same computer has been used for running all simulations to avoid the 

discrepancy of the computer performance. The computer used is an Alienware with i7 CPU and 

6 GB RAM. For the validation of the proposed method, random and uniform clusters were 

created. Two examples are shown below to validate the application of the 2-stage k-means 

algorithm. 

 

4.1. Validation of the 2-stage k-means clustering algorithm  

Assume that 
dX ⊂ � is a finite set of n points and d is the dimension of the data (features).  

The number of clusters is k which is an integer >1 since we consider that the data belong to 

more than one cluster. The clustering procedure is to find ( )1, , kS S= …S groups in which the 

data is divided into the S clusters without assigning one point into two or more clusters. Every 

cluster has one center such that all centers are ( )1, ,  kC C= …C . 

We also assumed that there exit subset such that it satisfied the condition that all the points in 

the subset cover all clusters.  

The k-means clustering algorithm used in this work is also known as Lloyd’s method; see [12].  
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Theorem  

Given a data fX   as subset of X with ( )1 , ,  f f
kS S= …fS clusters and centers ( )1, ,  kC C= …C , 

then applying one step of k-means would result in shifting the centers to the new locations 

( )1 , ,f f
kC C= …fC  such that ( ) ( )1 1 , , f f f f

k kC S C S… , so if  ⇒fX   X then  

( ) ( ) ( )1 11 1 , ,    , , ( )f f f f
k kk kC S C S C S C S… ⇒ …  

Proof of Theorem  

We assume that the whole data set is X of size n and subset of it is fX  with   n≤ , where f is an 

integer representing the number of data in the fast stage. Also all clusters ( )1, ,  kS S= …S  exist in 

fX  , in other words there is no empty cluster. This means that  ( ) ( )f
iimean C mean C≠  if   f n≠  .  

However, if   f n⇒  then ( ) ( )f
iimean C mean C⇒  

 

This completes the proof 

 

Corollary  

Continuing from the above Theorem, we can conclude that if the centers 

( ) ( )1 1 , , f f f f
k kC S C S… are produced from the fast stage, then it can be used for another k-means 

who uses the whole data X without the loss of generality of k-means clustering. This is what we 

call slow stage clustering. 

Since the centers produced from the fast stage ( ) ( )1 1 , , f f f f
k kC S C S… are located on the path of 

convergence of the centers for each cluster, then using these centers for clustering with whole 

data will be a valid option. This ends the proof of the corollary. Figure3 shows that always the 

fast stage cluster centers converges to the cluster centers, especially when the number of data is 

high. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Convergence of the cluster center with the fast stage cluster center 
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5. NUMERICAL EXAMPLES  

Two examples presented here to validate the proposed method. 

A data set with 800 samples and 2-dimension (3 clusters) is used. The following figures show 

the movement of one of the centers and the two stage clustering. 

 

Figure 4. Fast and Slow stages of the movement of one coordinate during the clustering 

 
Figure 5. Fast and Slow stages of the movement of the second coordinate during the 

clustering 

From Figs. 3 and 4 it is very clear that the approach of the red line (slow stage coordinate of one 

center) is very smooth comparing with the other fast stage coordinate movements. The first 

value of the red (slow) graph is the same as the last value of the blue (fast) graph. The number 

of iterations is higher than is required but this is only for clarification. The number of iterations 

required for the fast stage will of course be higher than the slow stage scheme. 
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Moreover, as you can see from the above graph, the coordinates have not been changed a lot. 

This means that the �-means algorithm does not need to run many times since we reached the 

correct accuracy. 

Another presentation of the effectiveness of the method is the movements of the three centers as 

shown in figures 6-9.: 

 
Figure 6. Three center movement during the fast stage clustering. 

 
A more detailed description is shown in the following figures in which the fast stage shows 

the squares and the slow stage shows the diamond symbol: 

 

 
Figure 7. Fast and slow stages of the first cluster center movements. 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.4, July 2011 

25 

 

 

 

 
Figure 8. Fast and slow stages of the second cluster center movements. 

 

 
Figure 9. Fast and slow stages of the third cluster center movements. 

 
As can be seen from the above diagrams, that the centers have moved many steps during the fast 

stage, this has been achieved in fast response. The diamond shapes shows the slow stage of 

iteration. The number of iterations of the slow stage is much less than the fast stage. Also the 

movements of the centers are very small. In this case the required calculation would be reduced 

from many steps to only couple of full step (for all dataset). This of course will save some time 

and reduce expenses.  

To be more specific about the proposed method Table 1 shows the creation of clusters in 

different iterations for three dimensional data. 
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Table 1. Distribution of points and centers during the fast and the slow stages of clustering 

 

Stages 
Iter 

No. 
Clusters Old Centers New Centers 

Points in  

Clusters 
Points 

 

Fast 

1 

C1 8 4 4 4.867 3.267 1.567 30,38,44 

15 

 

C2 4 4 4 6.16 2.85 4.68 

53,58,72 

86,88,93 

113,114 

138,145 

 

2 

C1 4.867 3.267 1.567 4.867 3.267 1.567 30,38,44 
 

C2 6.16 2.85 4.68 6.16 2.85 4.68 

53,58,72 

86,88,93 

113,114 

138,145 

 

          

Slow 

1 

C1 4.867 3.267 1.567 5.015 3.318 1.636 

1-50,58 

61,82,94 

99 

150 

 

C2 6.16 2.85 4.68 6.323 2.901 4.987 

51-57,59-60 

62-81 

83,93 
95-98 

100-150 

 

2 

C1 5.015 3.318 1.636 5.06 3.226 1.897 

1-50,54,58 
60-61,70 

80-82,90 

94,99,107 

 

C2 6.323 2.901 4.987 6.396 2.933 5.071 

51-53,55-57 
59,62-69 

71-79 

83-89 

91-93 

95-98 

100-106 

108-150 

 

3 

C1 5.06 3.226 1.897 5.083 3.205 1.956 

1-50,54,58 

60-61 

63 

65,70,80-82 

90,94 

99,107 

 

C2 6.396 2.933 5.071 6.409 2.942 5.1 

51-53,55-57 

59,62,64 

66-69,71-79 

83-89,91-93 

95-98 
100-106 

108-150 

 

4 

C1 5.083 3.205 1.956 5.083 3.205 1.956 

1-50,54,58 

60-61,63,65 
70,80-82,90 

94,99,107 

 

C2 6.409 2.942 5.1 6.409 2.942 5.1 

51-53,55-57 
59,62 

64,66-69 

71-79 

83-89 

91-93,95-98 

100-106 

108-150 

 

The two stages are clearly indicating the formation of clusters at each stage. The centers of the 

slow stage are the same as the centers of the end of the fast stage. The fast stage has taken only 

10% of the whole dataset. Although the number of iterations of the slow stage is 4, in bigger 

dataset this can be reduced by increasing the iterations of the fast stage. 

One data set from the UCI repository has been chosen to insure the applicability of the proposed 

method in [10]. The dataset is "Synthetic Control Chart Time Series" with 600 points, 60-

dimesion and 6 clusters, [11]. We have chosen one center and one coordinate of the 60 

dimension to clarify the movements of the centers as indicated by Figure 10.  
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The movement of the one coordinate is shown in Figure 8 for almost 300 iterations. This 

movement of the centers is measured as the difference between the mean of the cluster and the 

centers. This difference changes all the time during the iterations. 

 
Figure 10. Center convergence of one coordinate for one center of the Synthetic dataset using 

the normal k-means algorithm 
 

The use of the 2-stage k-means clustering algorithm for the Synthetic data set to calculate the 

center convergence is shown in Figure 9. The stopping criterion for fast stage is 310− and for the 

slow stage is 
610−

as the normal k-means method. Figure 11, however shows the fast 

convergence (blue) and slow convergence (red). 10% of the data has been used for the fast 

stage. The fluctuation of the centers during the slow stage is much less than the fluctuation of 

the centers in the normal k-means of Figure 10. 

 
Figure 11. Center convergence of one coordinate for one center of the Synthetic dataset using 

the fast (blue) and slow (red) k-means algorithm 

6. SPEED UP ANALYSIS   

The speed of the normal �-means is shown in blue while the speed of the modified �-means is 

shown in red. Two different computers were used of 32bit and 64bit Operating Systems. 
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Regardless, of the speed of the computer used the validation of the modified �-means always 

consistent as indicated by Fig. 9. The data used for the fast stage clustering is only 10% of the 

whole data which is randomly selected. The dataset used in this example is “Synthetic” which is 

100,000 samples with 10 dimensions. The speed of the modified �-means is almost twice the 

speed of normal �-means. This is due to the fact that 2-stage �-means clustering uses less full 

data iterations. The speed up is very clear in the high accuracy when the required µ is 10bc or 

less, where µ is the stopping criteria or the required accuracy. This is always important when 

you try to find good clustering results. 

 
Figure 12. Comparison in the speed of the modified �-means and normal �-means with 

different computers 

 

The speed up of the modified �-means comparing with the normal �-means is varying 

according to the accuracy. For the lower range of accuracy the speed up of clustering is ranges 

from (1-9) times. This would reduced for the higher accuracy for example from 10bc to 10b�T. 

Figure 9 shows clearly that the speed up is settled for the higher accuracy within 2 times. On the 

other hand the range of the random data selected to archive the fast clustering is also fluctuating. 

The best range is between 10%-20%. In the normal situation we require a good accuracy for the 

clustering to archive the full clustering to all data. This would be between 10%-20% of the data 

and accuracy between 10bc to 10b�T as shown in Table 2. 

Table 2. Speed up of clustering with the modified k-means using different dataset sample 

percentage of the total data 

10% 15% 20% 30% 40% 

A
cc

u
ra

cy
 

10b� 1.9 1.8 1.8 1.7 1.5 

10b� 3.8 3.5 3.4 3 2.5 

10bd 4.7 8.9 3.1 7 4.3 

10bc 1 1.7 1.1 3 8.5 

10be 2.9 1.6 2.2 2.1 2.4 

10bf 2 1.9 2.6 2.3 2.4 

10bg 2 1.4 2.4 2.3 1.6 

10bh 2 1.4 2.4 2.3 1.6 

10bi 2 1.4 2.4 2.3 1.6 

10b�T 2 1.4 2.4 2.3 1.6 
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The proper range of the sample data is between 10%-20%. Carrying out the required time for 

running the normal �-means and the modified �-means for 9 different data samples shows that 

the best range is 10%-20% to get less time in the calculation of the two algorithms as shown in 

Table 3. 

Table 3. Calculation time for normal kmeans and modified kmeans 

 

  

Fast + Slow  

k-means (sec) 

Normal  

k-means (sec) 

P
e

rc
e

n
ta

g
e

 o
f 

th
e

 d
a

ta
 

10% 4.81 14.3 

20% 9.93 14.3 

30% 14.94 14.3 

40% 19.95 14.3 

50% 25.17 14.3 

60% 30.45 14.3 

70% 36.62 14.3 

80% 42.01 14.3 

90% 47.66 14.3 

 

6.1. The Speed of the 2-stage k-means and normal k-means algorithms  

Bigger data sets were used to find out the time required to achieve the same results for both 

methods, the 2-stage and the normal k-means algorithms. As indicated previously that we used 

the same machine to run all examples. The data used is: 1M, 2M, 3M, 4M, 5M, 6M, 7M, 8M, 

9M, 10M with 12-dimensions. We kept the stopping criteria the same for both methods as 

indicated earlier. Since the data used in this step is much higher than the ones used previously, 

we only used a small part of the data (1%) for the calculation of the fast stage. Obviously, this 

small data will be chosen at random, again to insure the proper distribution amongst the whole 

datasets. The red circles in Figure 13 represent the normal k-means clustering method. While 

the blue circles characterize the 2-stage k-means algorithm. As you can see, the difference 

between the two speeds is higher for the higher datasets. The time required for the normal k-

means clustering using the 10M dataset is almost 2200 seconds, while the time for the 2-stage 

method is 640 seconds. Such reduction in time consumed for calculation is very useful and cost 

effective. 

 
Figure 13. The speed of the normal k-means and the 2-stage k-means clustering algorithms 
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The limitation of choosing bigger data sets prevented us from validating the method for data 

bigger than 10M points. This would be interesting finding for anybody who can run the above 

method for bigger data sets. 

7. CONCLUSIONS  

A simple proposal for achieving high speed of �-means clustering for ultra datasets has been 

presented in this paper. The idea has two folds. The first is the fast calculation of the new 

centers of the �-means clustering method. A small part of the data will be used in this stage to 

get the final destination of the centers. This of course will be achieved in high speed. The 

second part is the slow stage in which the �-means will start from well positioned centers. This 

stage may take a couple of iterations to achieve the final clustering. The whole dataset will be 

used for the second stage. 

In normal �-means algorithms, if the initial centers are located exactly at the means of the 

clusters of the data, then the algorithm requires only one step to assign the individual clusters to 

each data point. In our modified �-means we are trying to get to the stage of moving any initial 

centers to a location which is either that of the means or near them. The big gap between these 

locations will decide how many times the normal �-means is required to run to assign all data to 

their clusters. Our algorithm will quickly move the centers to locations which are near the 

means. Future work is required to find out the effect of different locations of the clusters on the 

speed up. 
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