
International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

DOI  : 10.5121/ijcnc.2010.2405                                                                                                               47 

DELAY-POWER PERFORMANCE 

COMPARISON OF MULTIPLIERS IN VLSI 

CIRCUIT DESIGN

Sumit Vaidya
1 

and Deepak Dandekar
2
 

1
Department of Electronic & Telecommunication Engineering,  

OM College of Engineering, 

Wardha, Maharashtra, India 
vaidyarsumit@gmail.com 

2
Department of Electronic Engineering,  

B. D. College of Engineering, 

Wardha, Maharashtra, India 
d.dandekar@rediffmail.com 

Abstract 

A typical processor central processing unit devotes a considerable amount of processing time in 

performing arithmetic operations, particularly multiplication operations. Multiplication is one of the 

basic arithmetic operations and it requires substantially more hardware resources and processing time 

than addition and subtraction. In fact, 8.72% of all the instruction in typical processing units is 

multiplication. In this paper, comparative study of different multipliers is done for low power requirement 

and high speed. The paper gives information of “Urdhva Tiryakbhyam” algorithm of Ancient Indian 

Vedic Mathematics which is utilized for multiplication to improve the speed, area parameters of 

multipliers. Vedic Mathematics suggests one more formula for multiplication of large number i.e. 

“Nikhilam Sutra” which can increase the speed of multiplier by reducing the number of iterations. 

Keywords 

Multiplier, Vedic Mathematics, VLSI design 

1. INTRODUCTION 

Multiplication is an important fundamental function in arithmetic logic operation. 

Computational performance of a DSP system is limited by its multiplication performance [9] 

and since, multiplication dominates the execution time of most DSP algorithms [3]; therefore 

high-speed multiplier is much desired [4]. Currently, multiplication time is still the dominant 

factor in determining the instruction cycle time of a DSP chip. With an ever-increasing quest for 

greater computing power on battery-operated mobile devices, design emphasis has shifted from 

optimizing conventional delay time area size to minimizing power dissipation while still 

maintaining the high performance [5]. Traditionally shift and add algorithm has been 

implemented to design however this is not suitable for VLSI implementation and also from 

delay point of view. Some of the important algorithm proposed in literature for VLSI 

implementable fast multiplication is Booth multiplier, array multiplier and Wallace tree 

multiplier [9]. This paper presents the fundamental technical aspects behind these approaches. 

 The low power and high speed VLSI can be implemented with different logic style. The three 

important considerations for VLSI design are power, area and delay. There are many proposed 

logics (or) low power dissipation and high speed and each logic style has its own advantages in 

terms of speed and power [6-7]. 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

48 

 

2. OBJECTIVES 

The objective of good multiplier to provide a physically compact high speed and low power 

consumption unit. Being a core part of arithmetic processing unit multipliers are in extremely 

high demand on its speed and low power consumption. 

To reduce significant power consumption of multiplier design it is a good direction to 

reduce number of operations thereby reducing a dynamic power which is a major part of total 

power dissipation. In the past considerable effort were put into designing multiplier in VLSI in 

this direction. 

3. METHODS AND PERFORMANCES 

There are number of techniques that to perform binary multiplication. In general, the choice is 

based upon factors such as latency, throughput, area, and design complexity. More efficient 

parallel approach uses some sort of array or tree of full adders to sum partial products. Array 

multiplier, Booth Multiplier and Wallace Tree multipliers are some of the standard approaches 

to have hardware implementation of binary multiplier which are suitable for VLSI 

implementation at CMOS level. 

3.1. Array Multiplier 

Array multiplier is an efficient layout of a combinational multiplier. Multiplication of two 

binary number can be obtained with one micro-operation by using a combinational circuit that 

forms the product bit all at once thus making it a fast way of multiplying two numbers since 

only delay is the time for the signals to propagate through the gates that forms the multiplication 

array. 

In array multiplier, consider two binary numbers A and B, of m and n bits. There are mn 

summands that are produced in parallel by a set of mn AND gates. n x n multiplier requires n 

(n-2) full adders, n half-adders and n2 AND gates. Also, in array multiplier worst case delay 

would be (2n+1) td. 

Array Multiplier gives more power consumption as well as optimum number of 

components required, but delay for this multiplier is larger. It also requires larger number of 

gates because of which area is also increased; due to this array multiplier is less economical [2] 

[11].Thus, it is a fast multiplier but hardware complexity is high [12]. 

 

 

Figure 1. Array Multiplier 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

49 

 

3.2. Wallace tree multiplier 

A fast process for multiplication of two numbers was developed by Wallace [13]. Using this 

method, a three step process is used to multiply two numbers; the bit products are formed, the 

bit product matrix is reduced to a two row matrix where sum of the row equals the sum of bit 

products, and the two resulting rows are summed with a fast adder to produce a final product.  

Three bit signals are passed to a one bit full adder (“3W”) which is called a three input Wallace 

tree circuit, and the output signal (sum signal) is supplied to the next stage full adder of the 

same bit, and the carry output signal thereof is passed to the next stage full adder of the same no 

of bit, and the carry output signal thereof is supplied to the next stage of the full adder located at 

a one bit higher position.  

Wallace tree is a tree of carry-save adders arranged as shown in figure 2.  A carry save adder 

consists of full adders like the more familiar ripple adders, but the carry output from each bit is 

brought out to form second result vector rather being than wired to the next most significant 

bit.  The carry vector is 'saved' to be combined with the sum later. In the Wallace tree method, 

the circuit layout is not easy although the speed of the operation is high since the circuit is quite 

irregular [2]. 

 

 

Figure 2. Wallace Tree Multiplier 

3.3. Booth Multiplier 

Another improvement in the multiplier is by reducing the number of partial products generated. 

The Booth recording multiplier is one such multiplier; it scans the three bits at a time to reduce 

the number of partial products [14]. These three bits are: the two bit from the present pair; and a 

third bit from the high order bit of an adjacent lower order pair. After examining each triplet of 

bits, the triplets are converted by Booth logic into a set of five control signals used by the adder 

cells in the array to control the operations performed by the adder cells. 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

50 

 

To speed up the multiplication Booth encoding performs several steps of multiplication 

at once. Booth’s algorithm takes advantage of the fact that an adder subtractor is nearly as fast 

and small as a simple adder. 

From the basics of Booth Multiplication it can be proved that the addition/subtraction 

operation can be skipped if the successive bits in the multiplicand are same. If 3 consecutive bits 

are same then addition/subtraction operation can be skipped. Thus in most of the cases the delay 

associated with Booth Multiplication are smaller than that with Array Multiplier. However the 

performance of Booth Multiplier for delay is input data dependant. In the worst case the delay 

with booth multiplier is on per with Array Multiplier [9]. 

The method of Booth recording reduces the numbers of adders and hence the delay 

required to produce the partial sums by examining three bits at a time. The high performance of 

booth multiplier comes with the drawback of power consumption. The reason is large number of 

adder cells required that consumes large power [14]. 

Declare Reg A (0:7), M (0:7), Q (-1:7), COUNT (0:2), f 

Declare bus INBUS (0:7), OUTBUS (0:7) 

BEGIN: A<-0, COUNT<-0, f<-0 

INPUT: M<-INBUS, Extend Q (0) ->Q (-1) 

              Q (0:7) <-INBUS, Q (-1) <-INBUS (0); 

ZERO TEST: if M=0�Q=0, then go to output 

Loop: if f=0 then begin 

ADD 1: if Q (6) Q (7) =01, then A (0:7) <-A (0:7) +M (0:7); else 

SUBSTRACT 1: if Q (6) Q (7) =11, then A (0:7) <-A (0:7)-M (0:7); f<-1, 

                             Else go to TEST; end 

                             If f=1 then begin 

ADD 2: if Q (6) Q (7) =00, then A (0:7) <-A (0:7) +M (0:7); f<-0, else 

 if Q(6) Q(7)=10, then A(0:7)<-A(0:7)-M(0:7) end 

TEST: if COUNT=7, then go to OUTPUT 

RIGHTSHIFT: A (0) <-M (0)’�F�M (0) �A (0); 

  A (1:7).Q<-A.Q (-1:6); 

INCREMENT: COUNT<-COUNT+1, go to loop; 

OUTPUT: Q (6) <-0, OUTBUS<-A 

  OUTBUS<-Q (-1:6); 

END; 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

51 

 

 

Table 1. Comparison between Multipliers 

4. ANCIENT VEDIC METHODS 

The use of Vedic mathematics lies in the fact that it reduces the typical calculations in 

conventional mathematics to very simple ones. This is so because the Vedic formulae are 

claimed to be based on the natural principles on which the human mind works [15]. Vedic 

Mathematics is a methodology of arithmetic rules that allow more efficient speed 

implementation [16]. This is a very interesting field and presents some effective algorithms 

which can be applied to various branches of engineering such as computing [17].  

4.1. Urdhva Tiryakbhyam Sutra 

The given Vedic multiplier based on the Vedic multiplication formulae (Sutra). This Sutra has 

been traditionally used for the multiplication of two numbers. In proposed work, we will apply 

the same ideas to make the proposed work compatible with the digital hardware.  

Urdhva Tiryakbhyam Sutra is a general multiplication formula applicable to all cases of 

multiplication. It means “Vertically and Crosswise” [15-16]. The digits on the two ends of the 

line are multiplied and the result is added with the previous carry. When there are more lines in 

one step, all the results are added to the previous carry. The least significant digit of the number 

thus obtained acts as one of the result digits and the rest act as the carry for the next step. 

Initially the carry is taken to be as zero. The line diagram for multiplication of two 4-bit 

numbers is as shown in figure 3. 

 Step 1  Step 2   Step 3      Step 4 

0 0 0 0  0 0 0 0  0 0 0 0     0 0 0 0 

 

0 0 0 0  0 0 0 0  0 0 0 0     0 0 0 0 

 

 Step 5   Step 6     Steps 7 

                                                        0 0 0 0    0 0 0 0     0 0 0 0 

 

                                                        0 0 0 0    0 0 0 0     0 0 0 0 

Figure 3. Line diagram for multiplication fo two 4-Bit Number 

Parameter Array Multiplier 
Wallace Tree 

Multiplier 
Booth’s Multiplier 

Operation Speed 

Less High 

Highest because the cycle 

length is as small as 

possible. 

Time Delay More (n+1)tFA Log(n) Less (ntFA/2 + ntFA) 

Area Maximum area 

because it uses a 

large number of 

adders. 

Medium area 

because Wallace 

Tree used to reduce 

operands. 

Minimum area because 

adder/subtracter is almost as 

small/fast as adder. 

Complexity Less complex More complex Most complex 

Power 

consumption 
Most More Less 

FPGA 

implementation 
Less efficient Not efficient Most efficient 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

52 

 

For this multiplication scheme, let us consider the multiplication of two decimal 

numbers (325 × 728). Line diagram for the multiplication is shown in Fig. 4. The digits on the 

two ends of the line are multiplied and the result is added with the previous carry. When there 

are more lines in one step, all the results are added to the previous carry. The least significant 

digit of the number thus obtained acts as one of the result digits and the rest act as the carry for 

the next step. Initially the carry is taken to be as zero. 

 

Figure 4. Multiplication of two decimal numbers by Urdhva Tiryakbhyam 

Now we will extend this Sutra to binary number system. For the multiplication 

algorithm, let us consider the multiplication of two 8 bit binary numbers A7A6A5A4A3A2A1A0 

and B7B6B5B4B3B2B1B0. As the result of this multiplication would be more than 8 bits, we 

express it as …R7R6R5R4R3R2R1R0. As in the last case, the digits on the both sides of the line are 

multiplied and added with the carry from the previous step. This generates one of the bits of the 

result and a carry. This carry is added in the next step and hence the process goes on. If more 

than one lines are there in one step, all the results are added to the previous carry. In each step, 

least significant bit acts as the result bit and all the other bits act as carry. For example, if in 

some intermediate step, we will get 011, then1 will act as result bit and 01 as the carry. Thus we 

will get the following expressions: 

R0=A0B0 

C1R1=A0B1+A1B0 

C2R2=C1+A0B2+A2B0+A1B1 

C3R3=C2+A3B0+A0B3+A1B2+A2B1 

C4R4=C3+A4B0+A0B4+A3B1+A1B3+A2B2 

C5R5=C4+A5B0+A0B5+A4B1+A1B4+A3B2+A2B3 

C6R6=C5+A6B0+A0B6+A5B1+A1B5+A4B2+A2B4 +A3B3  

C7R7=C6+A7B0+A0B7+A6B1+A1B6+A5B2+A2B5 +A4B3+A3B4 

C8R8=C7+A7B1+A1B7+A6B2+A2B6+A5B3+A3B5+A4B4 

C9R9=C8+A7B2+A2B7+A6B3+A3B6+A5B4 +A4B5 

C10R10=C9+A7B3+A3B7+A6B4+A4B6+A5B5 

C11R11=C10+A7B4+A4B7+A6B5+A5B6 

C12R12=C11+A7B5+A5B7+A6B6 

C13R13=C12+A7B6+A6B7 

C14R14=C13+A7B7 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

53 

 

C14R14R13R12R11R10R9R8R7R6R5R4R3R2R1R0 being the final product. Hence this is the 

general mathematical formula applicable to all cases of multiplication. All the partial products 

are calculated in parallel and the delay associated is mainly the time taken by the carry to 

propagate through the adders which form the multiplication array. So, this is not an efficient 

algorithm for the multiplication of large numbers as a lot of propagation delay will be involved 

in such cases. To overcome this problem, Nikhilam Sutra will present an efficient method of 

multiplying two large numbers. 

5.2. Nikhilam Sutra 

Nikhilam Sutra means “all from 9 and last from 10”. It is also applicable to all cases of 

multiplication; it is more efficient when the numbers involved are large. Since it find out the 

compliment of the large number from its nearest base to perform the multiplication operation on 

it. Larger the original number, lesser the complexity of the multiplication. We will illustrate this 

Sutra by considering the multiplication of two decimal numbers (96 × 93) where the chosen 

base is 100 which is nearest to and greater than both these two numbers. 

As shown in Fig. 5, we write the multiplier and the multiplicand in two rows followed 

by the differences of each of them from the chosen base, i.e., their compliments. We can write 

two columns of numbers, one consisting of the numbers to be multiplied (Column 1) and the 

other consisting of their compliments (Column 2). The product also consists of two parts which 

are distributed by a vertical line. The right hand side of the product will be obtained by simply 

multiplying the numbers of the Column 2 (7×4 = 28). The left hand side of the product will be 

found by cross subtracting the second number of Column 2 from the first number of Column 1 

or vice versa, i.e., 96 - 7 = 89 or 93 - 4 = 89. The final result will be obtained by combining 

RHS and LHS (Answer = 8928). 

 

 

Figure 5. Multiplication of decimal numbers using Nikhilam Sutra 

6. COMPARISION AND DISCUSSION 

FPGA implementation results shows that multiplier Nikhilam Sutra based on of Vedic 

mathematics for multiplication of binary numbers is faster than multipliers based on Array and 

Booth multiplier[2]. It also proves that as the number of bits increases to N, where N can be any 

number, the delay time is greatly reduced in Vedic Multiplier as compared to other multipliers. 

Vedic Multiplier has the advantages as over other multipliers also for power and regularity of 

structures.  



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

54 

 

 

Table 2. Comparison of Multiplier w.r.t. delay (ns) 

 There are number of techniques for logic implementation at circuit level that improves the 

power dissipation, area and delay parameters in VLSI design. Implementation of parallel 

Multiplier in CPL logic shows significant improvement in power dissipation [1]. CPL requires 

more number of transistors to implement as compared to the CMOS and provides only a little 

improvement in speed. Pass Transistor Logic which offers better performance over both the 

CMOS and CPL in terms of delay, power, speed and transistor count. The PTL outperforms the 

CMOS implementation in speed and great in power dissipation, with approximately same 

transistor count [1]. When compared to CPL, PTL is faster and shows improvement in power 

and transistor count. 

Table 3. Comparison between multiplier designs in three different Logics  

7. CONCLUSION 

It can be concluded that Booth Multiplier is superior in all respect like speed, delay, area, 

complexity, power consumption. However Array Multiplier requires more power consumption 

and gives optimum number of components required, but delay for this multiplier is larger than 

Wallace Tree Multiplier. Hence for low power requirement and for less delay requirement 

Booth’s multiplier is suggested. Ancient Indian Vedic Mathematics gives efficient algorithms or 

formulae for multiplication which increase the speed of devices.  

Urdhva Tiryakbhyam, is general mathematical formula and equally applicable to all 

cases of multiplication. Also, the architecture based on this sutra is seen to be similar to the 

popular array multiplier where an array of adders is required to arrive at the final product. Due 

to its structure, it suffers from a high carry propagation delay in case of multiplication of large 

number. This problem can solved by Nikhilam Sutra which reduces the multiplication of two 

large numbers to the multiplication of two small numbers.  

The power of Vedic Mathematics can be explored to implement high performance 

multiplier in VLSI applications. Nikhilam Sutra in Vedic Mathematics is less complex than 

Urdhva Tiryakbhyam which can be tested with its implementation with different logics in VLSI. 

Name of Multiplier 
Array Multiplier Booth Multiplier Vedic Multiplier 

8×8 Bit 16×16 Bit 8×8 Bit 16×16 Bit 8×8 Bit 16×16 Bit 

Delay (ns) 47 92 117 232 27 39 

Parameters CMOS 
Complementary Pass 

Transistor Logic 

Pass Transistor 

Logic 

Number of 

Transistor 
Most More Less 

Area Maximum Medium Minimum 

Power Most More Less 

Delay Most More Less 

Speed Less Medium High 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

55 

 

Further the work can be extended for optimization of said multiplier to improve the speed or to 

minimize the delay. 

REFERENCES 

[1]  “A New Low Power 32×32- bit Multiplier” Pouya Asadi and Keivan Navi, World Applied 

Sciences Journal 2(4):341:347, 2007, IDOSI Publication. 

[2]  “A Novel Parallel Multiply and  Accumulate (V-MAC) Architecture Based  On Ancient Indian 

Vedic Mathematics”  Himanshu Thapliyal and Hamid RArbania. 

[3] “Low power and high speed 8x8 bit  Multiplier Using Non-clocked Pass Transistor Logic” 

C.Senthilpari, Ajay Kumar  Singh and K. Diwadkar, 1-4244-1355-9/07, 2007, IEEE. 

[4] Kiat-seng Yeo and Kaushik Roy “Low-voltage,low power VLSI sub system” Mc Graw-Hill 

Publication. 

[5] Jong Duk Lee, Yong Jin Yoony, Kyong Hwa Leez and Byung-Gook Park “Application of 

Dynamic Pass Transistor Logic to 8-Bit Multiplier” Journal of the Korean Physical Society, Vol. 

38, No. 3, pp.220-223,March 2001 

[6] C. F. Law, S. S. Rofail, and K. S. Yeo “A Low-Power 16×16-Bit Parallel Multiplier Utilizing 

Pass-Transistor Logic” IEEE Journal of Solid State circuits, Vol.34, No.10, pp. 1395-1399, 

October 1999. 

[7] Oscal T. C. Chen, Sandy Wang, and Yi-Wen Wu “Minimization of Switching Activities of 

Partial Products for Designing Low-Power Multipliers” IEEE Transaction on VLSI System.Vol. 

11, No.3, pp. 418-433, June 2003.  

[8] “Low Power High Performance Multiplier” C.N. Marimuthu and P.Thiangaraj, ICGST-PDCS, 

Volume 8, December 2008. 

[9]  “ASIC Implementation of 4 Bit Multipliers” Pravinkumar Parate ,IEEE Computer society. 

ICETET,2008.25. 

[10] Steven A. Guccione MARIO j. Gonzalez “A Cellular Multiplier for Programmable 

Logic”Computer Engineering Research Center,Department of Electrical and Computer 

Engineering, University of Texas at Austin, USA, Febuary, 1994. 

[11]  Morris Mano, “Computer System Architecture”,PP. 346-347, 3rd edition,PHI. 1993. 

[12] Jorn Stohmann Erich Barke, “A Universal Pezaris ArrayMultiplier Generator for SRAM-Based 

FPGAs” IMS- Institute of Microelectronics System, University of Hanover Callinstr, 34,D-

30167 Hanover,Germany. 

[13] Moises E. Robinson and Ear Swartzlander, Jr.“A Reduction Scheme to Optimize the Wallace 

Multiplier” Department of Electrical and Computer Engineering, University of Texas at   Austin, 

USA. 

[14] Tam Anh Chu, “Booth Multiplier with Low Power High Performance Input Circuitary”, US 

Patent, 6.393.454 B1,May 21, 2002. 

[15] “A Reduced-Bit Multiplication Algorithm For Digital Arithmetic” Harpreet Singh Dhilon And 

Abhijit Mitra, International Journal of Computational and Mathematical Sciences, Waset, 

Spring, 2008. 

[16]  “Lifting Scheme Discrete Wavelet Transform Using Vertical and Crosswise Multipliers” 

Anthony O’Brien and Richard Conway, ISSC, 2008,Galway, June 18-19. 

[17] H. Thapliyal and M. B. Shriniwas and H. .Arbania, “Design and Analysis   of a  VLSI Based 

High Performance Low Power Parallel Square Architecture”, Int. Conf. Algo. Math.Comp. Sc., 

Las Vegas,June 2005, pp. 72-76.

 

 

 

 



International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010 

56 

 

Authors  

S. R. Vaidya received the Bachelor of 

Engineeing degree in Electronic Engineering  

from R.T.M. Nagpur University, Nagpur in 

2007 and pursuing his M.Tech in Electronic 

Engineering from B. D. College of Engineering, 

Wardha, R.T.M.  Nagpur University. He is 

working towards M.Tech research project at 

R.T.M. Nagpur University. He is currently 

working as a Lecturer in Electronic and 

Telecommunication  Engineering Department at 

OM College of Engineering, Wardha. His areas 

of interest include High performance VLSI 

Design and VHDL based system design. 

Deepak R. Dandekar received the Bachelor of 

Engineering degree in Electronic Engineering 

from Nagpur University, in 1990 and the 

M.Tech (Electronic Engineeing) degree from 

Vishveshariya National Institute of Technology, 

Nagpur in 2004. He is currently working as a 

Assistant Professor in Department of Electronic 

Engineering at B. D. College of Engineering, 

Sewagram, Wardha since 1992. His area of 

interests include VLSI design and optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

     

   

 


