International Journal of Computer Networks & CommunicasiglJCNC), Vol.1, No.2, July 2009

Pollution in P2P Live Video Streaming*

Prithula Dhungél, Xiaojun He?, Keith W. Ross$ and Nitesh Saxena

!Department of Computer Science and Engineering
Polytechnic Institute of New York University
pdhung0l@ut opi a. pol y. edu,ross@ pol y. edu,nsaxena@ol y. edu
’Department of Electronics and Information Engineering
Huazhong University of Science and Technology
hei xj @wust . edu. cn

Abstract

P2P mesh-pull live video streaming applications — such ad$ieaming, PPLive, and PPStream
— have become popular in the recent years. In this paper, amiag the stream pollution attack,
for which the attacker mixes polluted chunks into the P2fidigtion, degrading the quality of the
rendered media at the receivers. Polluted chunks receiyech uinsuspecting peer not only effect
that single peer, but since the peer also forwards chunkshier @eers, and those peers in turn
forward chunks to more peers, the polluted content can piatgmspread through much of the P2P
network. The contribution of this paper is twofold. Firsy,Wway of experimenting and measuring a
popular P2P live video streaming system, we demonstratéthaollution attack can be devastating.
Second, we evaluate the applicability of four possible dgds to the pollution attack: blacklisting,
traffic encryption, hash verification, and chunk signing. &g these, we conclude that the chunk
signing solutions are most suitable.

1 Introduction

P2P live video streaming leverages the upload bandwidthaiypof peers for the distribution of video
or audio content. Unlike traditional client-server basgsteams, peers forward content to other peers in
the network. Various techniques have been used for impleénieR2P live video streaming systems.
The most popular P2P live video streaming applicationsytaglech as PPLive [1] and PPStream, use the
mesh-pull streaming architecture [10]. The idea is simdahat used in BitTorrent file sharing systems.
Each video stream is divided, at the source of the videorstra@o chunks. A peer makes partnerships
with a subset of other peers in the network watching the sadepwstream. Each participating peer
periodically sends to its neighbors “buffer maps”, whictigate which chunks it has available for shar-
ing. In order to watch a particular stream, a peer activaiypests chunks from its partners based on the
buffer maps of the partners. Meanwhile, it also forwardsiested chunks to its neighbors.

The distributed P2P architecture of such systems makes pihemne to various security threats. One
potentially devastating threat is the stream pollutionthils attack, the attacker mixes into the stream
bogus chunks, which degrade the quality of the renderedaratdhe receivers.

*A preliminary version of this paper appeared|ih [5]
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A similar type of attack has already been deployed in laagdesP2P file sharing systens [14] 16].
In file sharing, the attacker corrupts the targeted contentexample, with white noise or with warn-
ings about copyright violations), rendering the contentsable, and then makes this polluted content
available for sharing from one or more peers. Unable tordjsish polluted files from unpolluted files,
unsuspecting users download the polluted files into thein filg sharing folders, from which other
users may then download the polluted files. In this manndiyted files spread through the file sharing
system.

In a P2P live video streaming system, a polluter can injeotugbed chunks in the following ap-
proach:

e An attacker can join an ongoing video channel and estabhstn@rships with other peers, which
are watching the same channel.

e The attacker can then advertise to its partners that it hasga humber of chunks for the ongoing
video stream.

e When the neighbors request advertised chunks, the attaekels bogus polluted chunks instead
of legitimate chunks.

e Each receiver integrates into its playback stream the fgallahunks it receives from the attacker
along with other chunks it receives from its other neighboréie polluted chunks degrade the
quality of the rendered video at the receiver.

Importantly, polluted chunks received by an unsuspectiegr mot only effect that single peer, but
since the peer also forwards chunks to other peers, and pieess in turn forward chunks to more peers,
and so on, the polluted content can potentially spread ¢ironuch of the P2P network. If the amount
of polluted data is significant, users might eventually gestrated and entirely stop using the system.

Polluters are expected to have different motivations, dejpg on the video content. If a content
source distributes non-authorized copyrighted contéwat,oivner of the copyrighted content may hire
a “pollution company” to pollute the ongoing video streanmikar to what has been observed in file
sharing. If two channels are competing with each other, tramel may attempt to pollute the stream
of the other channel. If an individual disagrees with a clediarpolitical message, that individual may
be motivated to pollute the channel’s video stream. In &mlitthere can always be amateur hackers
who attempt to disrupt channels just for fun. For P2P liveevidtreaming, we anticipate a variety of
motivations that go well beyond copyright issues.

Contribution. The contribution of this paper is twofold. First, by way ofpeximenting and measuring
a popular P2P live streaming system, we demonstrate thabthdion attack can indeed be devastating.
In our experiment, before launching the attack in Brooklyparticular channel had about 3800 viewers;
during the attack the number of viewers dropped to about B@ficating that video quality became
unacceptable for a large majority of peers. We also obsetivadfor a peer located geographically
far from the attacking peer, a large fraction of its downkdénd uploaded chunks were polluted. The
second contribution is a survey of defense mechanismssidaepollution attack. We study four classes
of defense schemes: blacklisting, traffic encryption, hasification, and chunk signing. Among these,
we conclude that the chunk signing solutions are most daitab

2 Related Work

The distributed P2P systems are prone to various secutdgkat There are two classes of attacks:
attacks against P2P systems and attacks using P2P systeriswl review both classes of attacks.
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There have been reported a few instances of DistributedadbefiiService (DDoS) attacks against
tracker servers of some BitTorrent web sites. For exampl®dcember 2004, some BitTorrent web
servers, including that maintained by Lokitorrent, facddl@oS attack for hours [12]. In_[14], Liang et
al. reported the “pollution” attack in P2P file sharing sys$eand used measurement results to prove that
the magnitude of this attack on the KaZzaA network is very Higiore than 50%). They also outlined
some approaches to reducing pollution in P2P file sharingsys In[16], Liang et al. discovered that
the “index poisoning attack” is highly pervasive in the Haatk and Overnet networks.

To combat the attacks against P2P systems, Gkantsidis adidgBez in [7] proposed a scheme
to prevent jamming attacks caused due to the introductiacooiipted blocks in the P2P systems that
use network coding. In[11, 24] various reputation systeragevexamined for pollution filtering in file
sharing. In[[24], Walsh and Sirer presented a realtime implgation of a reputation system for the
LimeWire file sharing client in Gnutella. There has also beeme recent work on various security
aspects of streaming systems. [Inl[22], TheodorakopouldsBamas used a game-theoretical approach
to examine the effect of malicious users on the entire stimgusystem. In[[25] Wang et al. proposed
a credit-based system for safeguarding against DoS attadR@P streaming systems. Conner et al.
in [4] also address the issues of preventing selfishness alditacks in P2P streaming systems. In
[8] Haridasan and Renesse outlined different attacks thdtigast streaming systems are vulnerable
to, including the forgery attack (wherein, malicious peersy tamper with the data being sent to the
streaming system). They also described some techniquesmtd ggainst these attacks.

A P2P system potentially consists of hundreds of thousahgears. If malicious attackers capture
these P2P systems by exploiting various characteristitseeske systems [23], these systems may be used
as effective infrastructures for launching DDoS attackaragg arbitrary hosts in the Internet. As a result,
this victim host may undergo Denial-of-Service (DoS) dtadn [19], Naoumov and Ross were the first
to demonstrate how to divert the Overnet traffic to a victinsthoy index poisoning and routing table
poisoning. Then, Athanasopoulos et al. examined similan®Rttacks using Gnutellal[3]. With the
increasing popularity of BitTorrent, these torrent swagas also be exploited to launch DDoS attacks
on an innocent host[6] 9]. In[20, 21], DDoS attacks usingdh-based KAD network were studied in
depth. In[[21], Sun et al. also showed that gossip-basedrpasagement in the End-System-Multicast
(ESM) streaming system can be exploited for DDoS attacks.

To the best of our knowledge, we are the first to demonstr&el¢ivastating impact of a pollution
attack on a real P2P live video streaming system via a maasumtestudy. In addition, our study is the
first to survey defense mechanisms against pollution in R2Btreaming systems.

3 Pollution Attack

In this section, we present the results of a pollution atagleriment that we conducted on a popular P2P
live video streaming system called PPLive. We demonsthaédasibility of launching a pollution attack
and analyze the severity of the attack. For the experimeminstrumented our own customized PPLive
client that aggressively advertises video chunks, andsparse to requests for advertised chunks, sends
polluted chunks. We demonstrate that even a single matiquaer, equipped with a high bandwidth
network access, is able to inject a large number of pollutethks. The experimental results also verify
that PPLive peers naively forward polluted chunks to one oremother peers. If these peers also have
high bandwidth network access, the pollution in a streanmietyvork propagates to a high level very
quickly. To the best of our knowledge, none of the P2P liveegidtreaming systems available in the
market employs any kind of defense against such an attadleatrhe of our experiment. Therefore,
our pollution results for PPLive can most likely be duplagtor other live streaming systems (such as
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PPStream and CoolStreaming).

3.1 Setup of the Experiment

Figure[1 depicts our pollution experiment. For this expenity we selected a popular channel with a
chunk size o220 bytes and a playback bit ratd2 kbps as the target channel. We monitored two normal
PPLive peers, capturing their incoming and outgoing trafiitese two peers, labelled as “Brooklyn
peer,” and “Hong Kong peer” are equipped with Ethernet ndtve@cess. The Brooklyn peer is located
in the Ethernet domain at Polytechnic University, New Yofthe Hong Kong peer is located in Hong
Kong. The instrumented polluter is located in the same Bttedomain as the Brooklyn peer. This
polluter implements the PPLive protocol for joining a chahand exchanging buffer maps and video
chunks with one target peer. While doing the pollution eipents, we also ran our PPLive crawler,
which tracks the peer number of the polluted charinégl [10].

Polluter

P2P network

Figure 1: PPLive pollution experiment setup

3.2 Measurement Results

In our experiments, the polluter only sends polluted chuikihe Brooklyn peer. First, the polluter
establishes peer partnership with the Brooklyn peer; it eivertises that it has a large number of video
chunks for the channel. As a result, the Brooklyn peer startequest chunks from the polluter. Since
the polluter has a high upload rate, the Brooklyn peer findsitican download video chunks from the
polluter with a very high network throughput. We found théeaan initial transient stage, the Brooklyn
peer downloads almost all video chunks from the pollutesldd uploads these polluted chunks to other
peers in the network.

The pollution propagation amplified the pollution level rgficantly in the network and severely
impacted the service of the channel. This can be observed tlie sharp decrement in the number of
peers for the channel after the polluter started at time 34 minutes, as shown in Figuké 2. Figlre 2
also shows that for the same channel, when the system wasigiolfree on some other day, during the
same time period of the day, the peer number remained qetreyst

Each polluted chunk that the polluter uploads to the Brookbger has the same binary content
that we prepared before the experiment. Therefore, usiterliybyte comparison with the originally
prepared binary content, we can distinguish polluted chunim other clean chunks in the traces for
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Figure 2: Number of peers viewing channel over experimeribge

both Brooklyn and Hong Kong peers. In the remaining part &f $lection, we describe results in terms
of the numbers of polluted chunks observed.

In Figure[3, we plot the chunk download rate and upload ratéan®fBrooklyn peer, which is the
initial pollution target. These video chunks are dividetbipolluted chunks and normal chunks. Before
launching the pollution attack at= 34 minutes, the chunk download rate5i$)2 chunk/sec, matching
the video playback bit rat& 92 x 7220 x 8 = 342 kbps. In addition, all the downloaded chunks are clean
chunks. After the pollution is launched, the Brooklyn peseives most of the video chunks from the
polluter. Only sporadically, the Brooklyn peer downloatisan chunks from other peers. It also starts to
upload these polluted chunks to multiple other PPLive peers
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Figure 3: Clean and polluted chunks to/from Brooklyn peer

The Hong Kong peer is far away from and is not in the peer lifth® polluter and the Brooklyn
peer; however, we find that the polluted chunks propagatektyuand impact it significantly. In Figure
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[4, we plot the chunk download rate and upload rate of the Hamgkoeer. Similar to the Brooklyn peer,
it sustains a steady download bit rate before pollutionstaowever, after the pollution starts at around
t = 34 minutes, it starts to download a significant amount of petiuthunks. Unlike the Brooklyn peer,
which receives polluted chunks from the polluter direche Hong Kong peer still manages to receive
observable portion of clean chunks. It also uploads pdalleteunks to other peers, acting as a pollution
redistributor.
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Figure 4: Clean and polluted chunks to/from Hong Kong peer

To examine the pollution redistribution done by a node wighkbandwidth network access, we plot
the number of partners with which the Hong Kong peer exchewngieo chunks, over each 30-second
period. Figuré 5(&) depicts the number of neighbors thatigeadl at least one polluted chunk, and the
number that provided at least one clean chunk. As shown r€i§(a), before the pollution attack, the
Hong Kong peer downloads clean video chunks from around 86spéfter the pollution attack starts
att = 34 minutes, it is affected quickly in that it downloads pollditehunks from around 20 peers.
Nevertheless, it still downloads some clean chunks singeadhly polluted indirectly by the polluter.
This high polluted-peer/clean-peer ratio indicates thatgollution level of the system has reached at a
significant level. The pollution amplification is more clyademonstrated in the upload of the polluted
chunks by the Hong Kong peer. As shown in Fidure5(b), afteratitack is launched, it uploads polluted
chunks to around 30 peers; however, it only uploads cleamlchto less than 10 peers. In summary, the
Hong Kong peer (which is a high bandwidth peer that is not dpemanipulated by us) provides more
damage than contribution to the streaming system.

4 Prevention of Pollution

4.1 Blacklisting

In the blacklisting approach, we attempt to determine - ireatralized or decentralized manner - the
peers that originate and relay pollution. All such peerspgaeed into a blacklist. Peers neither send
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Figure 5: Numbers of polluted and clean partners of Hong Kumeer

chunks to nor receive chunks from the peers on this blacklist

This general approach was proposedLin [15] for P2P file shaystems. In P2P file sharing, it
was observed that the attackers often advertise inordmateoers of files. Peers can thus individually
count advertisements from IP prefixes and assign reputatmithe prefixes accordingly. As part of
a distributed reputation systern [11], the peers then shredputations with each other and update
the reputations of the IP prefixes. Finally, each peer cseatelacklist based on the reputations it has
of the other peers. In a similar manner, for P2P streamingcaveblacklist peers that advertise an
unusually large number of chunks, as these peers are aglgdrgimg to attract downloaders. However,
an attacker could easily circumvent such a defense by begwgdggressive in its chunk advertisements.
Furthermore, peers that relay pollution are not likely thibk unusual advertising behaviors.

An alternative approach is for each peer to attempt to détermvhether a chunk is polluted. If a
chunk is determined polluted, then the peer that sent thekcban be assigned a low reputation value.
Again, the reputations can be shared and a distributed Iidaclan be created. The critical step in this
approach is accurately determining whether a chunk is fgallor not. In P2P live video streaming, a
receiver typically obtains chunks from more than one pe&erdfore, by comparing characteristics of
the received chunks, one might be able to distinguish betweefake and the legitimate copies. Video
and audio processing techniques can possibly be used tt geltuted chunks. However, an attacker
should be able to circumvent such an approach by creatingkshilnat resemble neighboring chunks
(in the stream of chunks) but nevertheless significantlyimigh the quality of the rendered video. For
example, the attacker could insert duplicate chunks irgastream.

For file sharing systems, a large fraction of pollution camdskiced if users are careful enough not
to forward polluted content into the network. The same ie far P2P live streaming. This requires the
user to observe and manually indicate to the P2P streamiiigt the presence of pollution (if any) in
the stream being played. All nodes that are sending dateetoliggnt at this time could then be placed
on the list of candidate polluters/relayers. These lists foam the basis of a distributed reputation
system, from which blacklists can be created. This approaghires active involvement from all users.
Moreover, for any P2P live distribution, some users may b&eabfrom their stations even though
their stations are actively participating in the distribat In summary, it is unlikely that any of these
reputation/blacklisting approaches will be able to caesiy stop the pollution attack.

105



International Journal of Computer Networks & CommunicasiglJCNC), Vol.1, No.2, July 2009

4.2 Traffic Encryption

One reason the current P2P video streaming systems are for@uodiution attack is that all of these
systems have their (control as well as data) messages tittatin clear text. To inject pollution into

a stream, the attacker needs to send the correct messades dther peers with the correct header
and data format. This requires the attacker to first sniff sdraffic specific to the streaming system
and analyze the traffic to understand the protocol sequemten@ssage formats. If all the messages
a system uses were encrypted, it would be difficult for thackir to determine the message structure
in distributed application. This would prevent the attadkem inserting crafted messages into system,
such as message containing polluted data. This idea is ngpletely new. Skype is an example of a
widely deployed P2P system that uses encryption techniuelsfuscate its application specific traffic.
Of course, this idea works only if the system under consta®ras not open source.

To achieve traffic encryption, any pair of communicatingrpa®eed to establish a shared key with
each other. Public-key based key exchange protocols, subhffee-Hellman, can be used for this pur-
pose. However, in dynamic P2P live video streaming environment, where a peer is tiipicannected
with a number of other peers, such a continuous key genaratight not be feasible, especially on
devices such as PDAs.

The main disadvantage of using traffic encryption as a maapseiventing pollution, however, is
that it works well to protect the privacy of the applicatiowcol and message formats until the system
is subjected to a reverse engineering of the source. For@eaaithough the Kazaa/FastTrack protocol
was proprietary and encrypted, it was nevertheless rewargmeered (see[l13]). If the reverse engi-
neering process is thorough enough, considerable fraofitine system protocol and messages can be
revealed, thus facilitating the polluter to inject polbniinto one or more streams.

4.3 Hash Verification

In BitTorrent, before a peer begins to download a file, it otsta torrent file which provides the hashes
of all the chunks of the file. When a peer receives chunks frisrargeers, it compares the hashes of the
chunks received with the corresponding hashes in the tdiiterio verify their integrity.

We now consider applying the same general technique for R8Ribdeo streaming. The simplest
approach for this would be for each receiver to get the hagadh chunk form the source itself. As in
BitTorrent, this would allow each peer to verify the intégof each chunk before forwarding it to other
peers. However, the load on the source will be very high fargd number of receivers. The load on the
source can be reduced by distributing the hashes of the shthindugh the P2P system itself. But this
allows an attacker to easily replace an original chunk froengource with a fake chunk and replace the
corresponding valid hash with a hash for the fake chunk. Wareansuspecting peer receives the fake
chunk, it verifies the fake chunk with the fake hash, thusdpéaoled into believing the integrity of the
chunk. In summary, hash version, as done in BitTorrent, iangable solution for P2P live streaming.

4.4 Chunk Signing

In this section, we survey three techniques involving chsigking and evaluate their applicability for
detecting pollution in P2P live video streaming systemsgldeaon computational, bandwidth, and delay
overhead (note that delay is an important factor in the ctragéa live video). Tablé]l summarizes
the overheads for each of the techniques. In each techriggisp-called “authentication information”
needs to be transmitted to the receivers along with the churtkis authentication information can either
be provided by the source (in which case the load on the samiglet be high) or could be distributed
through the P2P system itself, in the form of a separatemstmde piggybacked onto chunks.

106



International Journal of Computer Networks & CommunicasiglJCNC), Vol.1, No.2, July 2009

Approach Computational Overhead Bandwidth Overhead Delay
Source | Receiver Source | Receiver
Sign All n signatures n verifications nls| 1 1
Star Chaining (n 4 1) hashes & (n 4 1) hashes & n(lh|(n — 1) +|s]) n 1
1 signature 1 verification
Merkle Tree Chaining| (2n — 1) hashes & (2n — 1) hashes & n(|hllogan + |s|) n 1
1 signature 1 verification
Sign and Correct n hashes & 1 signature & pBn hashes & nlh|/p n Bn
1 RS encoding constant verifications &
1 RS decoding

Table 1: Computational overhead, bandwidth overhead, al&y dor various chunk signing approaches
for a block containing: chunks.|h| is size of hash output (byteg}| is size of signature (bytes)

4.4.1 “Sign-All” Approach

In the “Sign-All" approach, each chunk is individually siphby the source, the signature (which is
the authentication information) is appended with the chammdt delivered to the receivers. The receiver
receives each chunk and its corresponding signature oneehyerifies its integrity and plays back (and
forwards) only if the chunk is valid, otherwise rejects tieick as being polluted.

This approach is fast in terms of playback, as it has a delagsponding to the processing of only
packet at the source and the receiving and processing ofigrdgket at the receiver . However, it incurs
high computation overhead. For a stream consisting @hunks, the source needs to compute and the
receiver needs to verify: signatures.

For channels with high bit rates, the number of chunks géeenaer second can be very high. This
means that the number of times per second the signature gfidate®n operations to be performed can
be equally high, leading to high computational requirersetthe source and the receivers. Thus, we
conclude that the “Sign-All” approach is computationalbry expensive, especially for devices such as
PDAs and smart phones.

4.4.2 Signature Amortization Approaches

For reducing the computational overhead incurred in “SMjii-scheme above, the “Signature Amor-
tization” approaches of[_[26], originally designed for IP Itiaast, can be used. In these approaches,
the chunks are divided into blocks such that only one sigeabperation per block is required. How-
ever, each chunk can be individually verified. This is ackigvhowever, at the cost of a slightly higher
bandwidth overhead than the “Sign-All” approach. Two difet approaches that provide signature
amortization that have been discussed in [26] can be useduWiiearize these next.

Star Chaining. In this approach, the source computes the hash of the coratiate of the hashes of all
chunks in the block, and signs it to produce the block sigeatlihe authentication information consists
of the block signature, chunk position in the block, and thshes of all other chunks in the block. On
receipt of a chunk in the block and the corresponding auitegtian information, the receiver first creates
the hash of the concatenation of the hashes of all the chumtksexifies the signature against this hash.
For a block ofn chunks, the source needs to perfatm 1 hash operations and one signature opera-
tion. The receiver has to perform a totalrofi- 1 hash operations and 1 signature verification. To verify
the first received chunk, the receiver needs to perform 2 bpshations and 1 signature verification
operation. Afterwards, all the hash values needed to atitiad® remaining chunks are known to the
receiver and can be cached. To authenticate each remaimimds in the block, the receiver makes use
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of the cached values and needs to perform only one hash mper@verall, a total of, + 1 hashes need
to be computed to authenticate a block. The scheme inculayaoleerhead equivalent to the processing
of n chunks at the source and receiving and processirgcbfink at the receivers. The total bandwidth
overhead is equivalent to the sizergfn — 1) hashes and signatures.

Consider an example of a channel with a stream generatiomteitof 372 kbps at the source. If
the chunk size i4000 bytes, the number of chunks generated per second at theesswapproximately
12. Using the star chaining approach, by grouping 32 chunksiioek, the source needs to perfo3
hash operations and only one block signature operationjtawery 3 seconds. Referring to the results
of [2], on PDAs of moderate capabilities, for a message of 2&&:h hash operation takes a fraction
of a millisecond, and a signature operation takes about 83&econds. Hence, the time taken for the
source to perform the hashing and signing operations fonglesblock is less than 100 milliseconds.
This indicates that the star chaining approach is commurally feasible even for devices with lower
computational capabilities working as video sources. Haurhore, since signature verification is much
faster than the generation, the computational overhedekaieteiver is even lower. The total bandwidth
overhead is equivalent to arougdKB (around16%), when using 128-bit MD5 hashing and 1024-bit
RSA signing.

Merkle-Tree Chaining. This approach based on Merkle-Tréel[18] requires buildimguathentication
tree at the source for each block. The leaf nodes corresmotitethashes of the chunks in the block.
Other nodes are constructed as hashes of their children.sigihature on the root node becomes the
block signature. The authentication information for edcbnk is the block signature, chunk position in
the block, and the siblings of each node on the path from tifelede corresponding to the chunk to the
root in the authentication tree. On receiving a chunk in oeelband the corresponding authentication
information, the receiver first creates the hash of the r@otenand then verifies the block signature
against this hash.

For a block ofn chunks, the source needs to perfo2m — 1 hash operations and one signature
operation. The receiver, on the other hand, has to perfbrm 1 hash operations and 1 signature
verification to authenticate a block. To verify the first ckun the block, the receiver needs to perform
log, n+ 1 hash operations and 1 signature verification. Afterwartitheold hash values corresponding
to nodes in the tree can be cached and reused for verifyinginamy chunks. Overall, a total @ — 1
hashes need to be computed to authenticate a block. As ingheproach, the delay overhead to
authenticate a block in this scheme is equivalent to thegmsing of: chunks at the source and receiving
and processing df chunk at the receiver. The total bandwidth overhead, ontther thand, is equivalent
to the size ofz log, n hashes and signatures.

Using the example described above, for a blocRthunks, the source and receiver need to perform
63 hash operations each and 1 signature and 1 verificationtapereespectively, about every 3 seconds.
This is almost twice the cost incurred in the star chainingraeach, however, is still computationally
feasible for devices like PDAs. The bandwidth overheadoasiatl5% when using 128-bit MD5 hashing
and 1024-bit RSA signing. This implies that the Merkle-Tobaining approach is much more efficient
than the star chaining approach in terms of bandwidth.

4.4.3 “Sign-and-Correct” Approach

We now summarize a solution[17], which we call “Sign-anda@ot” approach. Refer to[17] for detalils.
The source first hashes each chunk of the given block selyaaaig signs the concatenation of all these
hashes. The hashes and the signature together (which isitthentication information) are then error
corrected using the Reed-Solomon (RS) error correcting goth the ratep :ﬁ, wherea denotes
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the survival rate (which means if a block afchunks is sent, the receiver obtains at leastvalid
chunks);3 denotes the flood rate (which means if a blockeafthunks is sent, an attacker can not flood
more thansn chunks);e denotes the tolerance of the RS decoder. The source thes sahedach chunk
¢; along with the error corrected informatiaf. On receipt ofm chunks gn < m < n), the receiver
can reconstruct the authentication information using enlyvalid chunks. Using the authentication
information, the validity of all chunks in the block can baetenined.

For a block consisting af chunks, the source needs to perfotmashes antl signature operation (in
addition to RS encoding), and the receiver needs to perfatonatant number of signature verification
operations ane hashes in the best case ghw hashes in the worst case (in addition to RS decoding).
Since the RS encoding and decoding involve expensive rficétiipn and addition operations over large
fields, the computation overhead in this approach is highen that in Merkle-Tree chaining.

The total bandwidth overhead is approximately equivaletié size of./p hashes. This implies the
bandwidth overhead for this approach is less than that fokMd ree chaining when(hlog, n +s) >
nh/p (Whereh is hash size and is signature length). For the MD5-RSA combination, it is whe
logon + 8 > 1/p. Clearly, for large values af, the overhead for Sign-and-Correct approach is much
lower than the overhead incurred in Merkle-Tree chaininging the same example as before, for a
block of 32 chunks and forx = 0.5, = 1.5 ande = 0.1, the bandwidth overhead comes out to be
around3380 bytes (around%).

This solution incurs a delay corresponding to the procgssim chunks at the source and receiving
and processing ain chunks, in the best case, agd in the worst case, at the receiver. In comparison
to Merkle-Tree chaining, the delay at the receiver hereightl higher, however, it can be acceptable
based on the type of application.

5 Conclusion

In this paper, we studied the pollution attack for P2P livdea streaming systems. The contributions
made by the paper are twofold. First, we showed that thiskaitgpotentially devastating for the stream-
ing network provided that the attacker has access to a higtivddth connection. Second, we evaluated
the applicability of four different classes of solutionsaagst these attacks, namely, blacklisting, traffic
encryption, hash verification, and chunk signing. Amongéhave conclude that the chunk signing
solutions — Merkle-Tree chaining and Sign-and-Correcte-raost suitable. Of the two, the former is
more efficient in terms of computational overhead and thaydat the receiver, whereas the latter is
more efficient in terms of bandwidth usage. Based on the ty@pplications, and computational and

bandwidth requirements therein, either of the solutionddtbe used. In our future work, we would like

to implement these solutions and evaluate their effectigsriowards controlling pollution in P2P live

video streaming.
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