
International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

Pollution in P2P Live Video Streaming∗

Prithula Dhungel1, Xiaojun Hei2, Keith W. Ross1 and Nitesh Saxena1

1Department of Computer Science and Engineering
Polytechnic Institute of New York University

pdhung01@utopia.poly.edu,ross@.poly.edu,nsaxena@poly.edu
2Department of Electronics and Information Engineering

Huazhong University of Science and Technology
heixj@hust.edu.cn

Abstract

P2P mesh-pull live video streaming applications – such as CoolStreaming, PPLive, and PPStream
– have become popular in the recent years. In this paper, we examine the stream pollution attack,
for which the attacker mixes polluted chunks into the P2P distribution, degrading the quality of the
rendered media at the receivers. Polluted chunks received by an unsuspecting peer not only effect
that single peer, but since the peer also forwards chunks to other peers, and those peers in turn
forward chunks to more peers, the polluted content can potentially spread through much of the P2P
network. The contribution of this paper is twofold. First, by way of experimenting and measuring a
popular P2P live video streaming system, we demonstrate that the pollution attack can be devastating.
Second, we evaluate the applicability of four possible defenses to the pollution attack: blacklisting,
traffic encryption, hash verification, and chunk signing. Among these, we conclude that the chunk
signing solutions are most suitable.

1 Introduction

P2P live video streaming leverages the upload bandwidth capacity of peers for the distribution of video
or audio content. Unlike traditional client-server based systems, peers forward content to other peers in
the network. Various techniques have been used for implementing P2P live video streaming systems.
The most popular P2P live video streaming applications today, such as PPLive [1] and PPStream, use the
mesh-pull streaming architecture [10]. The idea is similarto that used in BitTorrent file sharing systems.
Each video stream is divided, at the source of the video stream, into chunks. A peer makes partnerships
with a subset of other peers in the network watching the same video stream. Each participating peer
periodically sends to its neighbors “buffer maps”, which indicate which chunks it has available for shar-
ing. In order to watch a particular stream, a peer actively requests chunks from its partners based on the
buffer maps of the partners. Meanwhile, it also forwards requested chunks to its neighbors.

The distributed P2P architecture of such systems makes themprone to various security threats. One
potentially devastating threat is the stream pollution. Inthis attack, the attacker mixes into the stream
bogus chunks, which degrade the quality of the rendered media at the receivers.

∗A preliminary version of this paper appeared in [5]

99

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

A similar type of attack has already been deployed in large-scale P2P file sharing systems [14, 16].
In file sharing, the attacker corrupts the targeted content (for example, with white noise or with warn-
ings about copyright violations), rendering the content unusable, and then makes this polluted content
available for sharing from one or more peers. Unable to distinguish polluted files from unpolluted files,
unsuspecting users download the polluted files into their own file sharing folders, from which other
users may then download the polluted files. In this manner, polluted files spread through the file sharing
system.

In a P2P live video streaming system, a polluter can inject corrupted chunks in the following ap-
proach:

• An attacker can join an ongoing video channel and establish partnerships with other peers, which
are watching the same channel.

• The attacker can then advertise to its partners that it has a large number of chunks for the ongoing
video stream.

• When the neighbors request advertised chunks, the attackersends bogus polluted chunks instead
of legitimate chunks.

• Each receiver integrates into its playback stream the polluted chunks it receives from the attacker
along with other chunks it receives from its other neighbors. The polluted chunks degrade the
quality of the rendered video at the receiver.

Importantly, polluted chunks received by an unsuspecting peer not only effect that single peer, but
since the peer also forwards chunks to other peers, and thosepeers in turn forward chunks to more peers,
and so on, the polluted content can potentially spread through much of the P2P network. If the amount
of polluted data is significant, users might eventually get frustrated and entirely stop using the system.

Polluters are expected to have different motivations, depending on the video content. If a content
source distributes non-authorized copyrighted content, the owner of the copyrighted content may hire
a “pollution company” to pollute the ongoing video stream, similar to what has been observed in file
sharing. If two channels are competing with each other, one channel may attempt to pollute the stream
of the other channel. If an individual disagrees with a channel’s political message, that individual may
be motivated to pollute the channel’s video stream. In addition, there can always be amateur hackers
who attempt to disrupt channels just for fun. For P2P live video streaming, we anticipate a variety of
motivations that go well beyond copyright issues.

Contribution. The contribution of this paper is twofold. First, by way of experimenting and measuring
a popular P2P live streaming system, we demonstrate that thepollution attack can indeed be devastating.
In our experiment, before launching the attack in Brooklyn,a particular channel had about 3800 viewers;
during the attack the number of viewers dropped to about 500,indicating that video quality became
unacceptable for a large majority of peers. We also observedthat for a peer located geographically
far from the attacking peer, a large fraction of its downloaded and uploaded chunks were polluted. The
second contribution is a survey of defense mechanisms against the pollution attack. We study four classes
of defense schemes: blacklisting, traffic encryption, hashverification, and chunk signing. Among these,
we conclude that the chunk signing solutions are most suitable.

2 Related Work

The distributed P2P systems are prone to various security attacks. There are two classes of attacks:
attacks against P2P systems and attacks using P2P systems. Next, we review both classes of attacks.

100

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

There have been reported a few instances of Distributed Denial-of-Service (DDoS) attacks against
tracker servers of some BitTorrent web sites. For example, in December 2004, some BitTorrent web
servers, including that maintained by Lokitorrent, faced aDDoS attack for hours [12]. In [14], Liang et
al. reported the “pollution” attack in P2P file sharing systems and used measurement results to prove that
the magnitude of this attack on the KaZaA network is very high(more than 50%). They also outlined
some approaches to reducing pollution in P2P file sharing systems. In [16], Liang et al. discovered that
the “index poisoning attack” is highly pervasive in the FastTrack and Overnet networks.

To combat the attacks against P2P systems, Gkantsidis and Rodriguez in [7] proposed a scheme
to prevent jamming attacks caused due to the introduction ofcorrupted blocks in the P2P systems that
use network coding. In [11, 24] various reputation systems were examined for pollution filtering in file
sharing. In [24], Walsh and Sirer presented a realtime implementation of a reputation system for the
LimeWire file sharing client in Gnutella. There has also beensome recent work on various security
aspects of streaming systems. In [22], Theodorakopoulos and Baras used a game-theoretical approach
to examine the effect of malicious users on the entire streaming system. In [25] Wang et al. proposed
a credit-based system for safeguarding against DoS attacksin P2P streaming systems. Conner et al.
in [4] also address the issues of preventing selfishness and DoS attacks in P2P streaming systems. In
[8] Haridasan and Renesse outlined different attacks that multicast streaming systems are vulnerable
to, including the forgery attack (wherein, malicious peersmay tamper with the data being sent to the
streaming system). They also described some techniques to guard against these attacks.

A P2P system potentially consists of hundreds of thousands of peers. If malicious attackers capture
these P2P systems by exploiting various characteristics ofthese systems [23], these systems may be used
as effective infrastructures for launching DDoS attacks against arbitrary hosts in the Internet. As a result,
this victim host may undergo Denial-of-Service (DoS) attacks. In [19], Naoumov and Ross were the first
to demonstrate how to divert the Overnet traffic to a victim host by index poisoning and routing table
poisoning. Then, Athanasopoulos et al. examined similar DDoS attacks using Gnutella [3]. With the
increasing popularity of BitTorrent, these torrent swarmscan also be exploited to launch DDoS attacks
on an innocent host [6, 9]. In [20, 21], DDoS attacks using theDHT-based KAD network were studied in
depth. In [21], Sun et al. also showed that gossip-based peermanagement in the End-System-Multicast
(ESM) streaming system can be exploited for DDoS attacks.

To the best of our knowledge, we are the first to demonstrate the devastating impact of a pollution
attack on a real P2P live video streaming system via a measurement study. In addition, our study is the
first to survey defense mechanisms against pollution in P2P live streaming systems.

3 Pollution Attack

In this section, we present the results of a pollution attackexperiment that we conducted on a popular P2P
live video streaming system called PPLive. We demonstrate the feasibility of launching a pollution attack
and analyze the severity of the attack. For the experiment, we instrumented our own customized PPLive
client that aggressively advertises video chunks, and in response to requests for advertised chunks, sends
polluted chunks. We demonstrate that even a single malicious peer, equipped with a high bandwidth
network access, is able to inject a large number of polluted chunks. The experimental results also verify
that PPLive peers naively forward polluted chunks to one or more other peers. If these peers also have
high bandwidth network access, the pollution in a streamingnetwork propagates to a high level very
quickly. To the best of our knowledge, none of the P2P live video streaming systems available in the
market employs any kind of defense against such an attack at the time of our experiment. Therefore,
our pollution results for PPLive can most likely be duplicated for other live streaming systems (such as

101

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

PPStream and CoolStreaming).

3.1 Setup of the Experiment

Figure 1 depicts our pollution experiment. For this experiment, we selected a popular channel with a
chunk size of7220 bytes and a playback bit rate342 kbps as the target channel. We monitored two normal
PPLive peers, capturing their incoming and outgoing traffic. These two peers, labelled as “Brooklyn
peer,” and “Hong Kong peer” are equipped with Ethernet network access. The Brooklyn peer is located
in the Ethernet domain at Polytechnic University, New York.The Hong Kong peer is located in Hong
Kong. The instrumented polluter is located in the same Ethernet domain as the Brooklyn peer. This
polluter implements the PPLive protocol for joining a channel and exchanging buffer maps and video
chunks with one target peer. While doing the pollution experiments, we also ran our PPLive crawler,
which tracks the peer number of the polluted channel [10].

Hong Kong
Peer

P2P network

Brooklyn
Peer

Polluter

Peer

Peer Peer

Peer

Peer

Figure 1: PPLive pollution experiment setup

3.2 Measurement Results

In our experiments, the polluter only sends polluted chunksto the Brooklyn peer. First, the polluter
establishes peer partnership with the Brooklyn peer; it then advertises that it has a large number of video
chunks for the channel. As a result, the Brooklyn peer startsto request chunks from the polluter. Since
the polluter has a high upload rate, the Brooklyn peer finds that it can download video chunks from the
polluter with a very high network throughput. We found that after an initial transient stage, the Brooklyn
peer downloads almost all video chunks from the polluter. Italso uploads these polluted chunks to other
peers in the network.

The pollution propagation amplified the pollution level significantly in the network and severely
impacted the service of the channel. This can be observed from the sharp decrement in the number of
peers for the channel after the polluter started at timet = 34 minutes, as shown in Figure 2. Figure 2
also shows that for the same channel, when the system was pollution free on some other day, during the
same time period of the day, the peer number remained quite steady.

Each polluted chunk that the polluter uploads to the Brooklyn peer has the same binary content
that we prepared before the experiment. Therefore, using byte-by-byte comparison with the originally
prepared binary content, we can distinguish polluted chunks from other clean chunks in the traces for

102

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 30 40 50 60 70 80 90 100

21:00 21:15 21:30 21:45 22:00 22:15

of

 p
ee

rs

Time (min)

Hour (GMT-8)

start

attack day
ordinary day

Figure 2: Number of peers viewing channel over experiment periods

both Brooklyn and Hong Kong peers. In the remaining part of this section, we describe results in terms
of the numbers of polluted chunks observed.

In Figure 3, we plot the chunk download rate and upload rate ofthe Brooklyn peer, which is the
initial pollution target. These video chunks are divided into polluted chunks and normal chunks. Before
launching the pollution attack att = 34 minutes, the chunk download rate is5.92 chunk/sec, matching
the video playback bit rate5.92×7220×8 = 342 kbps. In addition, all the downloaded chunks are clean
chunks. After the pollution is launched, the Brooklyn peer receives most of the video chunks from the
polluter. Only sporadically, the Brooklyn peer downloads clean chunks from other peers. It also starts to
upload these polluted chunks to multiple other PPLive peers.

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk download
clean chunk download

(a) Download

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk upload
clean chunk upload

(b) Upload

Figure 3: Clean and polluted chunks to/from Brooklyn peer

The Hong Kong peer is far away from and is not in the peer lists of the polluter and the Brooklyn
peer; however, we find that the polluted chunks propagate quickly and impact it significantly. In Figure

103

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

4, we plot the chunk download rate and upload rate of the Hong Kong peer. Similar to the Brooklyn peer,
it sustains a steady download bit rate before pollution starts; however, after the pollution starts at around
t = 34 minutes, it starts to download a significant amount of polluted chunks. Unlike the Brooklyn peer,
which receives polluted chunks from the polluter directly,the Hong Kong peer still manages to receive
observable portion of clean chunks. It also uploads polluted chunks to other peers, acting as a pollution
redistributor.

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

C
hu

nk
 r

at
e

(c
hu

nk
/s

ec
)

Time (min)

polluted chunk download
clean chunk download

(a) Download

 0.01

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100
C

hu
nk

 r
at

e
(c

hu
nk

/s
ec

)

Time (min)

polluted chunk upload
clean chunk upload

(b) Upload

Figure 4: Clean and polluted chunks to/from Hong Kong peer

To examine the pollution redistribution done by a node with high-bandwidth network access, we plot
the number of partners with which the Hong Kong peer exchanges video chunks, over each 30-second
period. Figure 5(a) depicts the number of neighbors that provided at least one polluted chunk, and the
number that provided at least one clean chunk. As shown in Figure 5(a), before the pollution attack, the
Hong Kong peer downloads clean video chunks from around 30 peers. After the pollution attack starts
at t = 34 minutes, it is affected quickly in that it downloads polluted chunks from around 20 peers.
Nevertheless, it still downloads some clean chunks since itis only polluted indirectly by the polluter.
This high polluted-peer/clean-peer ratio indicates that the pollution level of the system has reached at a
significant level. The pollution amplification is more clearly demonstrated in the upload of the polluted
chunks by the Hong Kong peer. As shown in Figure 5(b), after the attack is launched, it uploads polluted
chunks to around 30 peers; however, it only uploads clear chunks to less than 10 peers. In summary, the
Hong Kong peer (which is a high bandwidth peer that is not being manipulated by us) provides more
damage than contribution to the streaming system.

4 Prevention of Pollution

4.1 Blacklisting

In the blacklisting approach, we attempt to determine - in a centralized or decentralized manner - the
peers that originate and relay pollution. All such peers areplaced into a blacklist. Peers neither send

104

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100

of

 p
ar

tn
er

s

Time (min)

download polluted chunks
download clean chunks

(a) Download

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100

of

 p
ar

tn
er

s

Time (min)

upload polluted chunks
upload clean chunks

(b) Upload

Figure 5: Numbers of polluted and clean partners of Hong Kongpeer

chunks to nor receive chunks from the peers on this blacklist.
This general approach was proposed in [15] for P2P file sharing systems. In P2P file sharing, it

was observed that the attackers often advertise inordinatenumbers of files. Peers can thus individually
count advertisements from IP prefixes and assign reputations to the prefixes accordingly. As part of
a distributed reputation system [11], the peers then share the reputations with each other and update
the reputations of the IP prefixes. Finally, each peer creates a blacklist based on the reputations it has
of the other peers. In a similar manner, for P2P streaming, wecan blacklist peers that advertise an
unusually large number of chunks, as these peers are apparently trying to attract downloaders. However,
an attacker could easily circumvent such a defense by being less aggressive in its chunk advertisements.
Furthermore, peers that relay pollution are not likely to exhibit unusual advertising behaviors.

An alternative approach is for each peer to attempt to determine whether a chunk is polluted. If a
chunk is determined polluted, then the peer that sent the chunk can be assigned a low reputation value.
Again, the reputations can be shared and a distributed blacklist can be created. The critical step in this
approach is accurately determining whether a chunk is polluted or not. In P2P live video streaming, a
receiver typically obtains chunks from more than one peer. Therefore, by comparing characteristics of
the received chunks, one might be able to distinguish between the fake and the legitimate copies. Video
and audio processing techniques can possibly be used to detect polluted chunks. However, an attacker
should be able to circumvent such an approach by creating chunks that resemble neighboring chunks
(in the stream of chunks) but nevertheless significantly diminish the quality of the rendered video. For
example, the attacker could insert duplicate chunks into the stream.

For file sharing systems, a large fraction of pollution can bereduced if users are careful enough not
to forward polluted content into the network. The same is true for P2P live streaming. This requires the
user to observe and manually indicate to the P2P streaming client the presence of pollution (if any) in
the stream being played. All nodes that are sending data to the client at this time could then be placed
on the list of candidate polluters/relayers. These lists can form the basis of a distributed reputation
system, from which blacklists can be created. This approachrequires active involvement from all users.
Moreover, for any P2P live distribution, some users may be absent from their stations even though
their stations are actively participating in the distribution. In summary, it is unlikely that any of these
reputation/blacklisting approaches will be able to consistently stop the pollution attack.

105

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

4.2 Traffic Encryption

One reason the current P2P video streaming systems are proneto pollution attack is that all of these
systems have their (control as well as data) messages transmitted in clear text. To inject pollution into
a stream, the attacker needs to send the correct messages to the other peers with the correct header
and data format. This requires the attacker to first sniff some traffic specific to the streaming system
and analyze the traffic to understand the protocol sequence and message formats. If all the messages
a system uses were encrypted, it would be difficult for the attacker to determine the message structure
in distributed application. This would prevent the attacker from inserting crafted messages into system,
such as message containing polluted data. This idea is not completely new. Skype is an example of a
widely deployed P2P system that uses encryption techniquesto obfuscate its application specific traffic.
Of course, this idea works only if the system under consideration is not open source.

To achieve traffic encryption, any pair of communicating peers need to establish a shared key with
each other. Public-key based key exchange protocols, such as Diffie-Hellman, can be used for this pur-
pose. However, in adynamic P2P live video streaming environment, where a peer is typically connected
with a number of other peers, such a continuous key generation might not be feasible, especially on
devices such as PDAs.

The main disadvantage of using traffic encryption as a means to preventing pollution, however, is
that it works well to protect the privacy of the application protocol and message formats until the system
is subjected to a reverse engineering of the source. For example, although the Kazaa/FastTrack protocol
was proprietary and encrypted, it was nevertheless reverseengineered (see[13]). If the reverse engi-
neering process is thorough enough, considerable fractionof the system protocol and messages can be
revealed, thus facilitating the polluter to inject pollution into one or more streams.

4.3 Hash Verification

In BitTorrent, before a peer begins to download a file, it obtains a torrent file which provides the hashes
of all the chunks of the file. When a peer receives chunks from other peers, it compares the hashes of the
chunks received with the corresponding hashes in the torrent file to verify their integrity.

We now consider applying the same general technique for P2P live video streaming. The simplest
approach for this would be for each receiver to get the hash ofeach chunk form the source itself. As in
BitTorrent, this would allow each peer to verify the integrity of each chunk before forwarding it to other
peers. However, the load on the source will be very high for a large number of receivers. The load on the
source can be reduced by distributing the hashes of the chunks through the P2P system itself. But this
allows an attacker to easily replace an original chunk from the source with a fake chunk and replace the
corresponding valid hash with a hash for the fake chunk. Whenan unsuspecting peer receives the fake
chunk, it verifies the fake chunk with the fake hash, thus being fooled into believing the integrity of the
chunk. In summary, hash version, as done in BitTorrent, is not a viable solution for P2P live streaming.

4.4 Chunk Signing

In this section, we survey three techniques involving chunksigning and evaluate their applicability for
detecting pollution in P2P live video streaming systems, based on computational, bandwidth, and delay
overhead (note that delay is an important factor in the context of a live video). Table 1 summarizes
the overheads for each of the techniques. In each technique,the so-called “authentication information”
needs to be transmitted to the receivers along with the chunks. This authentication information can either
be provided by the source (in which case the load on the sourcemight be high) or could be distributed
through the P2P system itself, in the form of a separate stream or be piggybacked onto chunks.

106

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

Approach Computational Overhead Bandwidth Overhead Delay
Source Receiver Source Receiver

Sign All n signatures n verifications n|s| 1 1
Star Chaining (n + 1) hashes & (n + 1) hashes & n(|h|(n − 1) + |s|) n 1

1 signature 1 verification
Merkle Tree Chaining (2n − 1) hashes & (2n − 1) hashes & n(|h|log2n + |s|) n 1

1 signature 1 verification
Sign and Correct n hashes & 1 signature & βn hashes & n|h|/ρ n βn

1 RS encoding constant verifications &
1 RS decoding

Table 1: Computational overhead, bandwidth overhead, and delay for various chunk signing approaches
for a block containingn chunks.|h| is size of hash output (bytes),|s| is size of signature (bytes)

4.4.1 “Sign-All” Approach

In the “Sign-All” approach, each chunk is individually signed by the source, the signature (which is
the authentication information) is appended with the chunkand delivered to the receivers. The receiver
receives each chunk and its corresponding signature one by one, verifies its integrity and plays back (and
forwards) only if the chunk is valid, otherwise rejects the chunk as being polluted.

This approach is fast in terms of playback, as it has a delay corresponding to the processing of only1
packet at the source and the receiving and processing of only1 packet at the receiver . However, it incurs
high computation overhead. For a stream consisting ofm chunks, the source needs to compute and the
receiver needs to verifym signatures.

For channels with high bit rates, the number of chunks generated per second can be very high. This
means that the number of times per second the signature and verification operations to be performed can
be equally high, leading to high computational requirements at the source and the receivers. Thus, we
conclude that the “Sign-All” approach is computationally very expensive, especially for devices such as
PDAs and smart phones.

4.4.2 Signature Amortization Approaches

For reducing the computational overhead incurred in “Sign-All” scheme above, the “Signature Amor-
tization” approaches of [26], originally designed for IP multicast, can be used. In these approaches,
the chunks are divided into blocks such that only one signature operation per block is required. How-
ever, each chunk can be individually verified. This is achieved, however, at the cost of a slightly higher
bandwidth overhead than the “Sign-All” approach. Two different approaches that provide signature
amortization that have been discussed in [26] can be used. Wesummarize these next.

Star Chaining. In this approach, the source computes the hash of the concatenation of the hashes of all
chunks in the block, and signs it to produce the block signature. The authentication information consists
of the block signature, chunk position in the block, and the hashes of all other chunks in the block. On
receipt of a chunk in the block and the corresponding authentication information, the receiver first creates
the hash of the concatenation of the hashes of all the chunks and verifies the signature against this hash.

For a block ofn chunks, the source needs to performn + 1 hash operations and one signature opera-
tion. The receiver has to perform a total ofn + 1 hash operations and 1 signature verification. To verify
the first received chunk, the receiver needs to perform 2 hashoperations and 1 signature verification
operation. Afterwards, all the hash values needed to authenticate remaining chunks are known to the
receiver and can be cached. To authenticate each remaining chunk in the block, the receiver makes use

107

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

of the cached values and needs to perform only one hash operation. Overall, a total ofn + 1 hashes need
to be computed to authenticate a block. The scheme incurs a delay overhead equivalent to the processing
of n chunks at the source and receiving and processing of1 chunk at the receivers. The total bandwidth
overhead is equivalent to the size ofn(n − 1) hashes andn signatures.

Consider an example of a channel with a stream generation bitrate of372 kbps at the source. If
the chunk size is4000 bytes, the number of chunks generated per second at the source is approximately
12. Using the star chaining approach, by grouping 32 chunks in ablock, the source needs to perform33
hash operations and only one block signature operation, about every 3 seconds. Referring to the results
of [2], on PDAs of moderate capabilities, for a message of 2KB, each hash operation takes a fraction
of a millisecond, and a signature operation takes about 80 milliseconds. Hence, the time taken for the
source to perform the hashing and signing operations for a single block is less than 100 milliseconds.
This indicates that the star chaining approach is computationally feasible even for devices with lower
computational capabilities working as video sources. Furthermore, since signature verification is much
faster than the generation, the computational overhead at the receiver is even lower. The total bandwidth
overhead is equivalent to around20KB (around16%), when using 128-bit MD5 hashing and 1024-bit
RSA signing.

Merkle-Tree Chaining. This approach based on Merkle-Tree [18] requires building an authentication
tree at the source for each block. The leaf nodes correspond to the hashes of the chunks in the block.
Other nodes are constructed as hashes of their children. Thesignature on the root node becomes the
block signature. The authentication information for each chunk is the block signature, chunk position in
the block, and the siblings of each node on the path from the leaf node corresponding to the chunk to the
root in the authentication tree. On receiving a chunk in the block and the corresponding authentication
information, the receiver first creates the hash of the root node and then verifies the block signature
against this hash.

For a block ofn chunks, the source needs to perform2n − 1 hash operations and one signature
operation. The receiver, on the other hand, has to perform2n − 1 hash operations and 1 signature
verification to authenticate a block. To verify the first chunk in the block, the receiver needs to perform
log2 n+1 hash operations and 1 signature verification. Afterwards, all the old hash values corresponding
to nodes in the tree can be cached and reused for verifying remaining chunks. Overall, a total of2n − 1
hashes need to be computed to authenticate a block. As in the star approach, the delay overhead to
authenticate a block in this scheme is equivalent to the processing ofn chunks at the source and receiving
and processing of1 chunk at the receiver. The total bandwidth overhead, on the other hand, is equivalent
to the size ofn log2 n hashes andn signatures.

Using the example described above, for a block of32 chunks, the source and receiver need to perform
63 hash operations each and 1 signature and 1 verification operation, respectively, about every 3 seconds.
This is almost twice the cost incurred in the star chaining approach, however, is still computationally
feasible for devices like PDAs. The bandwidth overhead is around5% when using 128-bit MD5 hashing
and 1024-bit RSA signing. This implies that the Merkle-Treechaining approach is much more efficient
than the star chaining approach in terms of bandwidth.

4.4.3 “Sign-and-Correct” Approach

We now summarize a solution[17], which we call “Sign-and-Correct” approach. Refer to[17] for details.
The source first hashes each chunk of the given block separately and signs the concatenation of all these
hashes. The hashes and the signature together (which is the authentication information) are then error
corrected using the Reed-Solomon (RS) error correcting code with the rateρ = α2

(1+ε)β , whereα denotes

108

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

the survival rate (which means if a block ofn chunks is sent, the receiver obtains at leastαn valid
chunks);β denotes the flood rate (which means if a block ofn chunks is sent, an attacker can not flood
more thanβn chunks);ε denotes the tolerance of the RS decoder. The source then sends out each chunk
ci along with the error corrected informationsi. On receipt ofm chunks (αn ≤ m ≤ βn), the receiver
can reconstruct the authentication information using onlyαn valid chunks. Using the authentication
information, the validity of all chunks in the block can be determined.

For a block consisting ofn chunks, the source needs to performn hashes and1 signature operation (in
addition to RS encoding), and the receiver needs to perform aconstant number of signature verification
operations andn hashes in the best case andβn hashes in the worst case (in addition to RS decoding).
Since the RS encoding and decoding involve expensive multiplication and addition operations over large
fields, the computation overhead in this approach is higher than that in Merkle-Tree chaining.

The total bandwidth overhead is approximately equivalent to the size ofn/ρ hashes. This implies the
bandwidth overhead for this approach is less than that for Merkle-Tree chaining whenn(h log2 n+ s) >
nh/ρ (whereh is hash size ands is signature length). For the MD5-RSA combination, it is when
log2 n + 8 > 1/ρ. Clearly, for large values ofn, the overhead for Sign-and-Correct approach is much
lower than the overhead incurred in Merkle-Tree chaining. Using the same example as before, for a
block of 32 chunks and forα = 0.5, β = 1.5 andε = 0.1, the bandwidth overhead comes out to be
around3380 bytes (around3%).

This solution incurs a delay corresponding to the processing of n chunks at the source and receiving
and processing ofαn chunks, in the best case, andβn in the worst case, at the receiver. In comparison
to Merkle-Tree chaining, the delay at the receiver here is slightly higher, however, it can be acceptable
based on the type of application.

5 Conclusion

In this paper, we studied the pollution attack for P2P live video streaming systems. The contributions
made by the paper are twofold. First, we showed that this attack is potentially devastating for the stream-
ing network provided that the attacker has access to a high bandwidth connection. Second, we evaluated
the applicability of four different classes of solutions against these attacks, namely, blacklisting, traffic
encryption, hash verification, and chunk signing. Among these, we conclude that the chunk signing
solutions – Merkle-Tree chaining and Sign-and-Correct – are most suitable. Of the two, the former is
more efficient in terms of computational overhead and the delay at the receiver, whereas the latter is
more efficient in terms of bandwidth usage. Based on the type of applications, and computational and
bandwidth requirements therein, either of the solutions could be used. In our future work, we would like
to implement these solutions and evaluate their effectiveness towards controlling pollution in P2P live
video streaming.

References
[1] PPLive.http://www.pplive.com

[2] Argyroudis, P.G., Verma, R., Tewari, H., O’Mahony, D.: Performance analysis of cryptographic protocols on handheld
devices. In: NCA’04 (2004)

[3] Athanasopoulos, E., Anagnostakis, K.G., Markatos, E.P.: Misusing unstructured P2P systems to perform DoS attacks:
The network that never forgets. In: Proceedings of the 4th International Conference on Applied Cryptography and
Network Security (ACNS’06). Singapore (2006)

[4] Conner, W., Nahrstedt, K., Gupta, I.: Preventing DoS attacks in peer-to-peer media streaming systems. In: MMCN (2006)

109

http://www.pplive.com

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

[5] Dhungel, P., Hei, X., Ross, K.W., Saxena, N.: The pollution attack in P2P live video streaming: Measurement results and
defenses. In: SIGCOMM Peer-to-Peer Streaming and IP-TV Workshop (P2P-TV) (2007)

[6] El Defrawy, K., Gjoka, M., Markopoulou, A.: BotTorrent:Misusing BitTorrent to launch DDoS attack. In: USENIX
SRUTI (2007)

[7] Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distribution. In: IEEE INFOCOM, pp. 1–13
(2006)

[8] Haridasan, M., V. Renesse, R.: Defense against intrusion in a live streaming multicast system. In: P2P’06 (2006)

[9] Harrington, J., Kuwanoe, C., Zou, C.: A BitTorrent-driven distributed Denial-of-Service attack. In: 3rd International
Conference on Security and Privacy in Communication Networks (SecureComm 2007) (2007)

[10] Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A measurement study of a large-scale P2P IPTV system. IEEE Trans.
on Multimedia9(8), 1672–1687 (2007)

[11] Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: Theeigentrust algorithm for reputation management in P2P networks.
In: ACM WWW (2003)

[12] Lemos, R.: BitTorrent servers under attack.http://news.zdnet.com/2100-1009_22-5473754.html

[13] Liang, J., Kumar, R., Ross, K.W.: The FastTrack Overlay: A Measurement Study. Computer Networks50(6), 842–858
(2006)

[14] Liang, J., Kumar, R., Xi, Y., Ross, K.W.: Pollution in P2P file sharing systems. In: IEEE INFOCOM (2005)

[15] Liang, J., Naoumov, N., Ross, K.W.: Efficient blacklisting and pollution-level estimation in P2P file-sharing systems. In:
AINTEC (2005)

[16] Liang, J., Naoumov, N., Ross, K.W.: The index poisoningattack in P2P file-sharing systems. In: IEEE INFOCOM (2006)

[17] Lysyanskaya, A., Tamassia, R., Triandopoulos, N.: Multicast authentication in fully adversarial networks. In: IEEE
Symposium on Security and Privacy (2004)

[18] Merkle, R.C.: A digital signature based on a conventional encryption function. In: Crypto’87 (1987)

[19] Naoumov, N., Ross, K.: Exploiting P2P systems for DDoS attacks. In: InfoScale ’06: Proceedings of the 1st international
conference on Scalable information systems, p. 47 (2006)

[20] Steiner, M., En-Najjary, T., Biersack, E.W.: Exploiting KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rev.37(5), 65–70 (2007)

[21] Sun, X., Torres, R., Rao, S.: DDoS attacks by subvertingmembership management in P2P systems. In: Workshop on
Secure Network Protocols (NPSec 2007), pp. 1–6. Beijing, China (2007)

[22] Theodorakopoulos, G., Baras, J.S.: Malicious users inunstructured networks. In: IEEE INFOCOM (2007)

[23] Wagner, A., Plattner, B.: Peer-to-peer systems as attack platform for distributed Denial-of-Service. In: ACM SACT
Workshop. Washington, DC, USA (2002)

[24] Walsh, K., Sirer, E.G.: Thwarting P2P pollution using object reputation. Tech. Rep. TR2005-1980, Computer Science
Department, Cornell University (2005)

[25] Wang, W., Xiong, Y., Zhang, Q., Jamin, S.: Ripple-Stream: Safeguarding P2P streaming against DoS attacks. In: IEEE
ICME (2006)

[26] Wong, C.K., Lam, S.S.: Digital signatures for flows and multicasts. IEEE/ACM Trans. Netw.7(4), 502–513 (1999)

110

http://news.zdnet.com/2100-1009_22-5473754.html

	Introduction
	Related Work
	Pollution Attack
	Setup of the Experiment
	Measurement Results

	Prevention of Pollution
	Blacklisting
	Traffic Encryption
	Hash Verification
	Chunk Signing
	``Sign-All'' Approach
	Signature Amortization Approaches
	``Sign-and-Correct'' Approach

	Conclusion

