
International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

FORMAL ANALYSIS OF SECURITY POLICY
IMPLEMENTATIONS IN ENTERPRISE NETWORKS

P Bera1, Pallab Dasgupta2 and S K Ghosh1

1School of Information Technology
 2Department of Computer Science & Engineering

Indian Institute of Technology, Kharagpur, 721302, India.
Email: bera.padmalochan@gmail.com, pallab@cse.iitkgp.ernet.in,

skg@iitkgp.ac.in

ABSTRACT

The management of security, operations and services in large scale enterprise networks is becoming
more difficult due to complex security policies of the organizations and also due to dynamic changes in
network topologies. Typically, the global security policy of an enterprise network is implemented in a
distributed fashion through appropriate sets of access control rules (ACL rules) across various interface
switches (layer 3 switches) in the network. In such networks, verification of the ACL implementations
with respect to the security policies is a major technical challenge to the network administrators. This is
difficult to achieve manually, because of the complex policy constraints (temporal access constraints)
and the presence of hidden access paths in the network which may in turn violate one or more policy
rules implicitly. The inconsistent hidden access paths may be formed due to transitive relationships
between implemented service access paths in the network. Moreover, the complexity of the problem is
compounded due to dynamic changes in network topologies. In any point of time, the failure of the
network interfaces or links may change the network topology as a result alternative routing paths can be
formed for forwarding various service packets. Hence, the existing security implementation (distribution
of ACL rules) may not satisfy the policies. In this paper, a fault analysis module is incorporated along
with the verification framework which as a whole can derive a correct ACL implementation with respect
to a given security policy specification and can ensure that a correct security implementation is fault
tolerant to certain number of link failures. The verification module can find the correct security
implementation and the fault analysis module can find the number of link failures the existing security
implementation can tolerate and still satisfy the security policy of the network.

KEYWORDS

LAN, Network Security, Security Policy, Access control lists (ACL), SAT based verification.

1. INTRODUCTION

The services, operations and management of today's organizations (industrial, commercial,
academic etc) are becoming increasingly dependent on their enterprise LAN. Usually, these
LANs consist of a set of sub-networks or network zones (logical group of network elements or
entities) corresponding to different departments or sections, connected through various interface
switches (typically, Layer-3 switches). The network service accesses between these zones and
also with the external network (e.g., Internet) are governed by the global network security
policy of the organization. The global security policy of the network is defined as a collection of
“permit” and “deny” service access rules across various network zones where the services
referred any network applications conforming to TCP/IP protocol. For example, some of the
well-known network services are ssh, telnet, http etc. This global security policy is realized by
configuring the zone interfaces with appropriate sets of access control lists (ACLs).

 The major challenges related to the policy based security management in an enterprise LAN are
stated as follows:

56

mailto:skg@iitkgp.ac.in
mailto:pallab@cse.iitkgp.ernet.in
mailto:bera.padmalochan@gmail.com,%20

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

• To verify whether the security implementations (distribution of ACLs in the interface
switches) conform to the global policy.

• To analyze whether a correct security implementation conforms to the global policy
under dynamic changes in network topology.

The first issue states, given the global security policy of the LAN, the switches in the network
must be programmed in such a way that the ACL rules in these switches together guarantee
correct and precise implementation of the global security policy. In other words, we must
guarantee that service paths in the network which violate one or more global policy rules must
be denied by the combination of switches on the path through their local ACL rules. As an
example, consider a typical enterprise network shown in Fig.1. The example network is
deployed as hierarchical networking architecture consisting of Core, Distribution and Access
layers. Access layer includes two network zones, namely, ZONE_1 and ZONE_2. Moreover, the
zones can be partitioned into sub-zones. For example, in Fig.1, ZONE_1 is partitioned into
SUBZONE_11, SUBZONE_12 and so on. Here, the Core includes three routers (R1, R2 and
R3), the distribution network consists of two routers (R4 and R5). The external access to
Internet is realized through PROXY zone (consist of web proxy servers).

Now, consider the following global security policy for the network: “Internet (http) access is
NOT allowed from the ZONE_1”. This policy rule must be implemented by programming the
ACL rules in the routers interfaces. The first problem addressed in this paper is the task of
verifying that a given implementation is correct. The verification problem is more complex than
it appears at first glance. Firstly the security policies may be temporal, such as an organization
has the requirement that the http access to be blocked between 0900-1700 hours in weekdays
from a particular network zone. Therefore it is required to verify correctness at the various
windows of time. Secondly, network services may be combined to define service access paths
which are indirect or hidden. For example, even if direct http access from the ZONE_1 to the
PROXY in Fig.1 is blocked (say, by placing an appropriate deny rule in the router, R4), one can
ssh/telnet from ZONE_1 to ZONE_2 (which may be allowed from ZONE_1) and access Internet

ZONE_1
10.0.0.0/10

10.0.0.1/16

INTERNET

10.1.0.1/16

SUBZONE_11
10.0.0.0/16

SUBZONE_12
10.1.0.0/16

SUBZONE_21
10.64.0.0/16

SUBZONE_22
10.65.0.0/16

ZONE_2
10.64.0.0/10

10.64.0.1/16
10.65.0.1/16

172.16.0.1/30

172.16.0.2/30

172.16.0.13/30
172.16.0.14/30

172.16.0.18/30

172.16.0.29/30

172.16.0.30/30

172.16.0.9/30

172.16.0.10/30
172.16.0.5/30

172.16.0.6/30
203.110.140.2/28

203.110.140.1/28
Core

PROXY

Distribution

Access

R1 R2

R3

R4 R5

L3
Router

L2
Switch

172.16.0.17/30

172.16.0.26/30

172.16.0.21/30

172.16.0.22/ 172.16.0.25/30

 Fig.1 A Typical Enterprise Network

57

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

(which may be allowed for ZONE_2). Therefore, even though there is no direct http access path
from ZONE_1, the actual intent of preventing internet access from that zone is not guaranteed.
The combination of network services that can create hidden access paths for a specific service
needs to be known for verification. This constitutes a significant amount of domain knowledge
in the verification problem. In order to accommodate new types of services and thereby new
combinations of network services, our decision framework provides formalism for specifying
hidden access rules. In our previous work [24], a formal verification framework has been
proposed to analyze the security policy implementations in an enterprise network considering
these problems.

 In our earlier work [24], the security analysis was performed considering the network
topology to be static. However, in any point of time the failure of the interfaces may change the
network topology which is a common circumstance in an enterprise network. Hence, more
challenging problem is to analyze a correct security implementation under network topology
changes. In that case, the network service packets may be routed through alternative paths in the
network hence the distribution of ACL rules may not satisfy the security policy. This paper
presents a graph based network access model for analyzing the robustness of a correct ACL
implementation under arbitrary link failures. Basically, it finds the maximum number of link
failures the security implementation can tolerate and still satisfy the global policy of the
network. The proposed fault analysis methodology can be layered at the bottom of the
verification framework to extract a correct implementation under various network link failures.

 The rest of the paper is organized as follows. Section 2 describes the related work on network
security policy specification, security analysis tools and models. In section 3, the proposed
verification and fault analysis framework has been described. The verification of security policy
implementations along with the experimental results has been presented in section 4. Section 5
describes the fault analysis of security implementations.

2. RELATED WORK

The research works on network security analysis and policy configurations can be broadly
classified into three categories: (a) network firewall analysis algorithms and tools; (b) security
policy specification languages; and (c) network security and fault analysis using formal
approaches. However, none of these addresses the issue of hidden access path analysis.
Moreover, most of the works do not consider the dynamic network topology changes in their
analysis. Though the present work focuses on formal verification and fault analysis of security
policy implementations, a brief overview of all the categories has been presented in this section.

Existing literatures on firewall analysis primarily concentrate on inconsistency and redundancy
checks but most of those are not formally verified. Tools that allow user queries for firewall
analysis and management include Firmato [1] and Lumeta [2]. These tools can specify an
abstract network access control policy and firewall rules which satisfy that policy but lacks in
incorporating temporal constraints and hidden rule analysis. Eronen and Ziting [3] have
implemented an expert system for inconsistency detection. Al-Shaer and Hamed [4] worked on
the Firewall Policy Advisor. But both of these tools can handle a simple set of policy
constraints. The work by Guttman et al. [9] focuses on high level modelling of firewall and
network configurations that satisfy a given policy but the policy specifications are more general.

Researchers proposed different high level network security policy languages, namely, HLFL
[6], Firmato [1], FLIP [7] etc. The high level firewall language (HLFL) project is an approach to
translate the high level firewall rules into useful rules for IPChains, Netfilter, and many others.
The approach does an automatic translation, but it lacks important features such as detecting and
preventing the conflicts in the firewall rules. FLIP, most recently proposed high level conflict
free firewall policy language for enforcing access control based security and ensuring seamless
configuration management. In FLIP, security policies are defined as high level service oriented

58

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

goals, which can be translated automatically into access control rules to be distributed to
appropriate enforcement devices. But still it does not address temporal access constraints and
hidden access path analysis. A high level language, namely, Extended Security Policy
Specification Language (ESPSL) has been proposed as a part of this framework. The unique
feature of the language is simple constructs for specifying temporal policy rules.

There are few works on network security analysis using formal approaches. The FIREMAN
Toolkit [5] is an example to detect inconsistencies and redundancies in network of firewalls.
The set of all possible requests is formulated and model checking is used to divide the set into
those which are accepted, those which are rejected, and those for which no rule applies. The tool
can handle large set of firewall rules since it uses an efficient BDD representation. The Network
Policy Enforcement tool [11] is one of the more recent tools in this line of work. Ritchey and
Amman [12] shows how model checking can be used to analyze network vulnerabilities.
Another recent work is proposed by Matousek, Rysavy, Rab, and Sveda [13] on formal model
for network wide security analysis. They model the network topology with changing link states
and deploy bounded model checking of network security properties using SAT-based decision
procedure. However, this work is unable to ensure whether a correct security implementation is
fault tolerant under arbitrary link failures. Also, they enumerate all possible link state
combinations in a network for their analysis which may lead to state explosion problem for
large scale networks. Matsumoto and Bouhoula [16] propose a SAT based approach for
verifying firewall configurations with respect to security policy requirements. However, the
notion of hidden access paths and formalizing the verification problem in their presence has not
been addressed earlier. Again, a complete framework for analyzing the correctness of the
security policy implementations under network topology changes has not been proposed earlier.

3. PROPOSED VERIFICATION AND FAULT ANALYSIS FRAMEWORK

The proposed verification and fault analysis framework shown in Fig.2 primarily focuses on the
following issues:

• Conflict-free specification and modelling of the global security policy of an enterprise
LAN using the proposed policy specification language, ESPSL.

• Extraction of the implementation model from the distributed access control (ACL)
implementation in the network;

• Hidden access path analysis on the ACL implementation model;

• Reduction of policy and ACL implementation models into boolean functions and
formulation of a QSAT (satisfiability of quantified Boolean formula) problem;

• Solving the satisfiability problem using an efficient QBF SAT solver;

• Fault analysis on a correct ACL implementation model under network link failures.

The framework consists of two interlinked modules: 1) Verification Module 2) Fault Analysis
Module. The Verification module models the global security policy in an enterprise LAN using
a policy specification language; then extracts an implementation model from the distributed
ACL implementation corresponding to the policy; finally verifies the ACL implementation
model with the policy model using boolean satisfiability analysis (SAT). The fault analysis
module takes a correct ACL implementation with the underlying network topology and finds the
maximum number of network link failures it can tolerate to satisfy the global policy.

A policy specification language, namely, ESPSL (Extended Security Policy Specification
Language) has been proposed for modelling the global security policy. The inter-rule conflicts
between the policy rules are removed by maintaining a complete rule order in the rule set. The
conflict-free policy specification represents the policy model, MP.

59

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

An implementation model MI is extracted from the distributed ACL implementation
corresponding to the global policy for the network. It typically consists of set of ACL rules
distributed across various network interfaces. The hidden access path analysis procedure
incorporates extra rules in the implementation model based on the transitive relationships
between various service access paths. The inter-rule conflicts and topology information is
removed from the ACL rule base. For the purpose of verification, MP and MI are reduced into
boolean models. It requires reduction of the rule components and their inter relations into
boolean functions. The hidden access path analysis procedure is implemented by reducing the
hidden rules into a set of quantified boolean clauses which makes the procedure efficient and
fast. After boolean model reduction, a Q-SAT query is formulated as f = MP ⊕ MI , and is
represented in QDIMACS CNF standard [17]. Finally, the module solves the satisfiability of the
query, f, using quaffle QBF SAT solver [15] [18]. The output from the SAT solver indicates

Modelling the spec
in ESPSL

Extraction of
conflict-free topology
independent Model

Hidden access path
analysis

SAT
Reduction of
M

P
 and M

I

Formulating a Q-
SAT query, f (a
QBF formula in
QDIMACS)

QBF-SAT
solver
(quaffle)

 Output: SAT/
UNSAT

Global
security
Policy Spec

Distributed
ACL
Implementation

ACL
Implementation
Model, M

I

Policy Model,
M

P

 ?
UNSAT

Correct ACL
Implementation

Graph Model of the network
topology and ACL rules:
Network Access Model (N)

For each network service S,
form the service flow graph G

S

For all S,

χ
S
 ≥k?

Implementation is k-
link fault tolerant

Yes

No
Reconfigure ACL
based on SAT
instances

Fault Analysis
Module

Verification
Module

For each G
S
, compute the size of

the min edge cut, χ
S

Yes

Inter-rule conflict
removal

Fig.2 Proposed Verification and Fault Analysis Framework

60

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

SAT/UNSAT, where, SAT result indicates the ACL implementation is incorrect with respect to
the policy specification. Thus the verification module helps the administrator to debug the ACL
rule distribution towards a correct ACL implementation.

The Fault Analysis module takes a correct ACL implementation model (correct distribution of
ACL rules in the network interfaces) and the underlying network topology and finds the
maximum number of link failure it can tolerate so that it still conforms the global security
policy. This module stems from modelling the network topology and ACL rules as a network
access model and then formation of the service flow graphs (GS) under each network service
considering the “permit”/“deny” ACL rules associated to the network access model. Then the
module finds the min-cut, χS (minimum sized edge cut) for each service flow graph GS. Finally,
it finds the χN = min(χS) (smallest min-cut of all the service flow graphs) which represents the
fault tolerance value corresponding to the correct ACL implementation under the network.

4. VERIFICATION OF SECURITY POLICY IMPLEMENTATION

The security policy verification module consists of three sub-modules. 1) Policy specification
module 2) ACL Implementation module 3) QSAT based Verification module. The Policy
specification component models the global security policy in a high level language, ESPSL and
produces a conflict-free security policy model (MP). The implementation module takes the
distributed ACL implementation corresponding to the global security policy as an input and
extracts a conflict free topology independent implementation model (MI). The verification
module reduces the policy and implementation models into boolean clauses. It should be noted
that the hidden access path analysis procedure is incorporated in the implementation model
which typically adds new quantified rules in the boolean implementation model MI. After
reducing the models into boolean clauses, a Q-SAT query is formulated by taking exclusive-OR
between the models, i.e., f = MP ⊕ MI and represented in QDIMACS CNF standard [17].
Finally, the module solves the satisfiability of the query, f, using quaffle QBF Solver [18].

4.1. Policy Specification Module

The security policy of a network defines a set of parameterized functional rules on flow of
packets between different network zones. The specification language must express the complex
security constraints correctly. As a part of the verification framework, a language, namely
Extended Security Policy Specification Language (ESPSL) has been proposed. In the following
section, the various constructs of the proposed language are described. Some of the language
constructs described in our earlier work [24] has been modified in this paper.

4.1.1. Network Topology Specification

The ESPSL has the following constructs to describe the network topology.

Zone: A zone is a logical unit consisting of workstations, servers or other systems in the
network, usually refers to a particular section of an organization. It is represented by IP address
block(s) and it referred by the IP address block(s) or by a symbolic name. Further, a zone can be
partitioned into multiple disjoint sub-zones. For example ZONE_1 can be defined as follows.

Zone ZONE_11 [10.0.0.0-10.0.255.255]; Zone ZONE_12 [10.1.0.0-10.1.255.255];
Zone ZONE_1 [ZONE_11, ZONE_12];

Router: Routers are interconnecting Layer 3 switches for connecting various sub-networks. A
router can be connected to a network zone or another router. It consists of set of interfaces.

Interface: An interface is the connecting link between a zone and a router or multiple routers.
Each interface is identified by a unique IP address.

Interface L12 [172.16.0.13]; Interface L13 [172.16.0.5]; Interface L14 [172.16.0.2];
Interface L15 [172.16.0.17]; Router R1 [L12, L13, L14, LR15];

61

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

4.1.2. Network Service and Policy Rule Specification

The ESPSL has the following constructs to specify the network services and policy rules.

Service: Network service is defined by a network protocol and a predicate associated with it.
Each predicate defines the service port numbers or port ranges.

Service http = TCP [port = 80]; Service ssh = TCP [port>20 AND port<23];

Policy Rule: A policy rule defines a service access path between a source and a destination zone
under some constraints (optional). The static rules do not include temporal access constraints,
whereas temporal rules include such constraints. ESPSL models only time dependent temporal
constraints which can be combination of day and time range specifications.

Permit ssh(ZONE_1, ZONE_2);
Deny http(ZONE_1, PROXY) [const = week_day(0800-1700)];

4.2. ACL Implementation Module

The global security policy of an enterprise LAN is implemented through a set of access control
rules (ACL) applied to various interfaces of the access switches (or routers) in a distributed
manner. There are various device specific standards for specifying access control rules e.g.
Cisco standard ACL [8]. Most of the standards are logically similar in the context of
implementing basic security policy of a network. Cisco standard ACL has some extra features to
represent temporal constraints and is widely used in large scale networks. In our approach, a
model is extracted from the distributed ACL implementation corresponding to the global
security policy of a network. This process involves following phases; (a) Translating ACL rules
into service flow rules (b) Resolving inter-rule conflicts and topology dependency (c) Hidden
access path analysis.

4.2.1. Translating ACL Implementation into Service Flow Rule base

This phase translates the distributed ACL implementation into a service flow rule base which is
stored in a 3-level index structure. Each service flow rule consists of rule header and its
functional clause. Rule header component holds binding information of the rule to an ACL
group and a router interface. Functional clause holds the components of each ACL rule. The
specifications of the functional components are similar to our policy model. The service flow
rule structure is shown in Table 1.

 Table 1. Service Flow Rule Structure

<F_Rule>:: <Rule_header> <Functional_clause>
<Rule_header>:: <router_id> <Interface_bind>
<Interface_bind>::<interface_id><acl_gr_no>
<Functional_clause>::
<action><service>(<src_IP>,<dest_IP>)[<const>]
<Service>:: <protocol> <port no | service_name>
<Action>:: permit | deny

A 3-level index structure is used to store the functional components of various ACL rules along
with their bindings to ACL groups and router interfaces. First two level of the index holds the
rule header and the leaf level holds the functional components. Each leaf level node can hold
components of multiple rules under the same ACL group or router interface. Each leaf level
node is represented as a linked list of structured nodes where each structure node holds the
functional components of a single ACL rule. The service flow rule base generated from this
phase does not change the semantics of the distributed ACL implementation.

62

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

4.2.2. Resolving Inter-rule Conflicts and Network Topology Dependency

The proposed SAT based verification framework aims at verifying the distributed ACL
implementation with the global policy specification through reduction of the rule bases into a
set of boolean clauses. So, it is required to represent the distributed ACL rules into a single ACL
rule base which is inter-rule conflict free and network topology independent. It firstly requires
removal of various inter-rule conflicts from the service flow rule sets associated to each router
interface separately, and then merging the conflict free rule sets in a single rule base. The inter-
rule conflicts may occur due to rule component dependencies as described follows.

Rule subsuming conflict: Consider a pair of ACL rules P1 and P2 under the same ACL group
where P1 precedes P2;

P1: Permit TCP X1, Y1 eq ssh;

P2: Deny TCP X, Y eq ssh; such that X1 ⊂ X and Y1 ⊂ Y.

Here, the source and destination of P2 subsume those of P1 and the rules are top-down order
dependent. The pair of rules semantically means that "ssh" service access from any source in X
to any destination in Y is denied except those where source and destination are X1 and Y1
respectively. To make these rules conflict-free (i.e., order independent), requires addition of two
new rules P2

’ and P2
’’ in place of P2 where,

P2
’: Deny TCP (X-X1), Y eq ssh;

P2
’’: Deny TCP X, (Y-Y1) eq ssh.

Similar type of conflict may occur between a pair of static and temporal ACLs under the same
ACL group with same service component.

Rule Over-riding conflict: Consider a pair of ACL rules P3 and P4 under the same ACL group
where P3 precedes P4 in the rule set,

P3: Permit TCP X, Y eq http;

P4: Deny TCP X, Y eq http.

Here P3 overrides P4 that means P4 can't hold. As the rule order is top down, resolving this
conflict requires deletion of P4 from the rule base. On the other hand, consider a pair of rules P5

and P6,

P5: Permit X, Y eq ssh;

P6: Permit Z, W eq ssh; such that, ((X⊂ Z) ∧ (Y ⊂ W)) ∨ ((Z ⊂ X) ∧ (W ⊂ X)).

In such cases where the rules hold the above dependency relation and their service and action
components are identical, order-major rule (P5) overrides the order-minor rule (P6) which means
P6 can't hold. Resolving this conflict requires deletion of P6 from the rule base.

The inter-rule conflict removal procedure resolves these conflicts from the rule base through
selective insertion and deletion of rules to or from the rule base. Once the conflicts from each
rule set are resolved, the main procedure removes the binding information and merges the rule
sets into a single rule base, namely, Conflict_Free_ACL_Base which is network topology
independent. Then, the hidden access path analysis procedure is applied on the rule base,
Conflict_Free_ACL_Base, which is described in the following section.

4.2.3. Hidden Access Path Analysis

The hidden service access paths may exist in a network due to the transitive access relationships
between various known network services. In section 1, it has been shown how hidden http
access paths may appear in a network through conflicting ssh service. The hidden access paths
can be modelled through a set of formulas in predicate logic. For example, the hidden http
access paths can be formally represented as follows.

63

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

∀X∀Z((∃Y, ssh(X,Y)∧http(Y,Z)⇒http(X,Z))--------(1)

∀X∀Z((∃Y, telnet(X,Y)∧http(Y,Z)⇒http(X,Z))--------(2)

∀X∀Z((∃Y,∃T, ssh(X,Y)[T]∧http(Y,Z)[T]⇒http(X,Z)[T])--------(3)

∀X∀Z((∃Y,∃T, telnet(X,Y)[T]∧http(Y,Z)[T]⇒http(X,Z)[T])--------(4)

As mentioned above, the formulas (1) and (2) represent static hidden http access paths whereas,
(3) and (4) represent the temporal hidden http access paths with some time constraint T. Here,
X, Y, Z ∈ All_Zone represent network zones and All_Zone represents total (internal) network
which is disjoint union of distinct network zones.

For the proper assessment of the implementation with respect to the policy model, all such
hidden access paths should be incorporated in the implementation model. Basically, the
proposed hidden access path analysis procedure modifies the inter-rule conflict free rule base,
Conflict_Free_ACL_Base, by inserting new rules or updating the access permissions of existing
rules. The procedure consists of two major phases. First phase modifies the rule base by
analyzing transitivity between every pair of rules under similar service types and the second
phase modifies the rule base by analyzing such relationships between every pair of rules under
different service types. This procedure is directly implemented in SAT reduction phase of
implementation model depicted in next section. It basically reduces the set of predicate logic
formulas (representing the hidden access rules) into set of quantified boolean clauses and
incorporates those clauses to the boolean model corresponding to Conflict_Free_ACL_Base.
The complete boolean model generated through this procedure represents the implementation
model MI .

4.3. QSAT Based Verification Module

QSAT based approach reduces the verification problem into a quantified boolean formula f and
checks its satisfiability. Although satisfiability analysis is NP complete problem, still this
technique is becoming popular today due the tremendous time tradeoffs of modern SAT solvers
[10] and QBF SAT solvers [18] [19]. In our approach, both the security policy and
implementation models are reduced into set of boolean clauses, MP and MI respectively. Then
satisfiability of the formula f = MP ⊕ MI is checked using a QBF SAT solver. It requires
translation of the formula into conjunctive normal form (CNF). The formula, f, contains clauses
over quantified variables due to the inclusion of hidden access path analysis in MI. So, it is
translated into QDIMACS CNF [17] format and satisfiability is checked using quaffle QBF
SAT solver [18].

4.3.1. Boolean Reduction of the Models

In this phase, policy and implementation rule bases are reduced into a set of boolean clauses.
The rules in the models are broadly classified into two major types: (a) Generic access control
rules which are common to both models (b) Hidden access rules which are specific to the
implementation model. Although the boolean model reduction algorithms are nit the scope of
this paper but these procedures are briefly described here.

Policy Model Reduction: The policy model consists of a set of generic access control rules.
The reduction of the policy model firstly requires the mapping of the generic rule components
into a set of boolean variables. The rule components include service (protocol, port number),
source zone, destination zone and time constraint. A network zone can be specified as single IP
address or range of IP addresses. So, source and destination zones are mapped to 32 boolean
variables each. A range of IP addresses can be translated using disjunction (∨) operator.
Address ranges with masks can be reduced by bit-wise anding (&&) the masks with the base
addresses. Similarly, protocol type and port numbers are mapped into appropriate boolean
variables. In both the models, time constraints are modelled as disjunction of its valid periods.

64

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

Each valid period can contain day of week, day of a month, and hours in a day as component.
Each component of a valid period is mapped into a set of boolean variables.

Algorithm 1: Boolean Reduction of Policy Model

Functional mapping of rule components into boolean variables:

Protocol(P):FP(p0 ,p1)

PortNo(I):FI(i0,i1,...,i7)

Src_IP(SIP):FS(s0,s1,...,s31)

Dst_IP(DIP):FD(d0,d1,...,d31)

Time(T):FT(dt0,dt1,dt2,t0,..,t4)

Action(g):A(g)

Algorithm:: Reduce_Pol_Model()

Input: Policy Rule Base {PR1, PR2,.., PRN}

Output: Reduced Policy Model MP

1. BEGIN

2. X1=1/True

3. FOR each policy rule PRi (i=1 to N)

4. Ri =Reduce_Gen_Rule(PRi)

5. Xi+1 ⇔ ((Xi ∨ Ri) ∧ gi) ∨ ((Xi∧ ¬Ri) ∧ ¬gi))

6. END FOR

7. MP ⇔ XN+1

8. END

Where, [gi =1, if action(Ri) = “permit”

 = 0 , if action(Ri)= “deny”].

Procedure: Reduce_Gen_Rule()

Input: A generic rule PRi

Output: Boolean Reduction of the rule PRi

1. BEGIN

2. Pi ⇔ FPi (p0,p1) ∧
3. Ii ⇔FIi(i0,i1,..,i7) ∧
4. Servi ⇔ (Pi ∧ Ii) ∧
5. SIPi ⇔FSi(s0,s1,..,s31) ∧
6. DIPi ⇔FDi(d0,d1,..,d31) ∧
7. Ti ⇔FTi(dt0,dt1,dt2,t0,..,t4) ∧
8. Ri⇔(Servi ∧SIPi ∧ DIPi ∧Ti)

9. Return Ri

10. END

After rule components mapping, the policy model reduction algorithm functionally reduces each
rule into a boolean clause [as conjunction of rule components], translates each clause based on
the action component (“permit/1” or “deny/0”) and finally combines all translated clauses into a
single boolean clause. The boolean model generated from this phase defines the policy model,
MP. The functional mapping of the policy rule components and main policy model reduction
procedure is presented in Algorithm 1.

65

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

Implementation Model Reduction:

This phase firstly reduces the generic ACL rules corresponding to Conflict_Free_ACL_Base,
which is similar to policy rule reduction. Then the hidden rules are reduced sequentially and
associated to the reduced generic rule base (represented by, boolean model, YN+1, refer
Algorithm2). It finally produces the reduced implementation model MI .

Algorithm 2: Boolean Reduction of Implementation Model

Algorithm:: Reduce_Imp_Model()

Input: Conflict_free_ACL_Base {IR1, IR2,.., IRN}

Output: Reduced Implementation model, MI

1. BEGIN

2. Y1=1/True

3. FOR each generic ACL rule IRi (i=1 to N)

4. FRi = Reduce_Gen_Rule(IRi)

5. Yi+1⇔((Yi∨ FRi) ∧ gi)∨ ((Yi∧ ¬FRi) ∧ ¬gi))

6. END FOR

7. MI = Reduce_hidden_rule()

8. END

Procedure: Reduce_hidden_rule()

Input: Generic rule model, YN+1, and Hidden rule set {HR1,…, HRN}

Output: Reduced Implementation model, MI

1. BEGIN

2. FOR each reduced generic rule FRi (i=1 to N)

3. TDIPi ⇔DIPi ∧
4. DSIPi ⇔FDSi(TDIPi,s0,s1,..,s31)

5. END FOR

6. Encode_comp()

7. M0 =YN+1

8. FOR each hidden rule HRi (i=1 to N)

9. M1 =Update_model_bool_hidden(M(i-1), HRi)

10. END FOR

11. MI =MN

12. END

Procedure: Update_model_bool_hidden(M0, HR1)

Input: Boolean model M0 and hidden rule HR1

[HR1:: ∀X∀Z, ∃Y, ssh(X,Y) ∧ ssh(Y,Z) ⇒ ssh(X,Z)]

Output: Updated model M1 with reduction of hidden rule HR1

1. BEGIN

2. ∀X∀Z,∃Y, IF ssh(X,Y) ∈ M0 and ssh(Y,Z)∈ M0 THEN

3. M1⇔ M0 ∨ ssh(X,Z)

4. Return M1

5. END IF

6. END

66

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

The hidden rule reduction procedure starts with some pre-processing tasks. At first, for each
generic ACL rule, the destination and the source matches to the destination are mapped to set of
boolean variables other than their primary mapped variables. Then the total set of distinct
source, destination and time-constraint are functionally encoded to set of boolean variables.
These tasks are to enhance the hidden rule reduction procedures. After that, the main procedure
sequentially reduces each hidden rule into a quantified boolean formula and updates the generic
ACL rule model, YN+1. Initially, YN+1 is assigned to a model M0, then it is sequentially updated
by the hidden rules to produce intermediate models, M1, M2 and so on. The final model
generated from this phase represents the reduced implementation model MI. The procedure for
the reduction of implementation model is presented in Algorithm 2.

4.3.2. QBF SAT Solver and Q-SAT Query Formation

We have used quaffle QBF solver [18] as the verification tool. It takes Q-SAT query in standard
conjunctive normal form (CNF) and checks its satisfiability. The commonly used format for
storing quantified CNF formula (of QSAT problems) in ASCII files is QDIMACS format [17].

Q-SAT query for our problem: "Is the ACL implementation model (MI) exactly equals to policy
model (MP)". So, it is sufficient to check the un-satisfiability of the expression: f = MP ⊕ MI. In
the previous subsection, boolean reduction of MI and MP has been described. In the framework,
the QSAT query is translated into CNF using standard algorithm for 3-CNF satisfiability [14].
The algorithm forms truth table for every sub-expression containing disjunctions of
conjunctions and converts it into CNF applying De-Morgan's rules where each clause contains
at most 3 literals. For example, equivalent CNF for the SAT query f is represented as (MP ∨ MI)
∧(¬MP ∨ MI). The CNF formula is represented into QDIMACS format and is provided as input
to quaffle QBF solver. It checks the SAT or UNSAT of the formula.

4.4. Verification Results

The verification framework has been tested with various test cases of implementations under
defined policy specifications in an enterprise LAN. Few of those experimentations are shown in
Table 2. It shows number of policy and ACL rules along with the number of variables,
quantified variables and clauses in the reduced QSAT query under each test case.

 Table 2. Verification Results
Test
Cases

P I V Q C Quaffle
Output

TCR TSAT TE

TC1 10 10 80 21 159 SAT 2.84 7.16 1.19

TC2 23 25 88 24 198 UNSAT 4.57 8.17 0.88

TC3 23 28 88 24 201 SAT 4.63 8.34 0.75

TC4 38 38 94 28 231 UNSAT 5.21 9.33 1.17

TC5 45 32 94 22 215 SAT 5.11 8.47 0.93

TC6 45 45 90 25 245 UNSAT 5.76 9.17 1.12

P: Number of policy rules

I: Number of ACL rules in Conflict_free_ACL_Base

V: Number of boolean variables in the Q-SAT query

Q: Number of quantified variables in the Q-SAT query

C: Number of CNF clauses in the Q-SAT query

TCR: ACL Conflict and topology dependency Removal time (in seconds)

TSAT: SAT reduction time (in seconds)

67

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

TE: quaffle runtime (in milliseconds)

TC: Test cases

The result shows SAT/UNSAT of the Q-SAT query (i.e.) along with the SAT reduction time
and quaffle execution time to generate the outputs. Here, the SAT result implies that the
implementation does not satisfy the policy (i.e., MP ≠ MI) whereas the UNSAT implies
implementation satisfies the policy (i.e., MP = MI). The SAT reduction time is much higher than
the SAT execution time. The SAT reduction time is linearly dependent on the number of policy,
ACL rules and hidden rule reduction time. Normally, hidden rule reduction time remains
constant as the number of hidden rules is fixed in the model. On the other hand the ACL
Conflict removal time is dependent on the number of ACL rules and their inter-dependency.

5. FAULT ANALYSIS OF SECURITY POLICY IMPLEMENTATION

The pre-requisite for the fault analysis module is a correct ACL implementation with respect to
the global policy specification. The correct ACL implementation is extracted by the verification
module of the framework described earlier. The flow diagram for the fault analysis procedure is
shown in Fig.3 To start with, the network with the ACL rule distribution is modeled as a graph
described as follows.

5.1. Network Access Model

Definition 1: A network access model is defined as a 3-tuple N = <D, I, F>, where,

• D is a finite set of network devices. Again network devices (D) can be of two types: DR
indicates a finite set of network routers and DE indicates the end point devices
(network zones, workstations or web servers etc)

• I⊆{D×D} is a finite set of network interfaces between network devices, such that for
every physical interface between D1 and D2 there is a pair of lines or channels: I12 =<D1,
D2> and I21 = <D2, D1}>. Again, network interfaces (I) can be of two types: IE ⊆{DR×
DE} {DE × DR} indicates set of network interfaces which connect end point devices
to routers; and IR⊆{DR×DR} indicates set of interfaces between a pair of routers.

• F is a finite set of ACL rules assigned to the edges of the graph.

Because, ACL rules can be applied in both directions of the link, we consider that the set I
contain for every link two items, <Di, Dj> and <Dj, Di>. Typically, there are two links between a
pair of routers based on the direction of flow which are represented as separate port in our
generic module. According to this definition, the network access model for the example network
shown in section 1 is a graph shown in figure Fig.3. This network model is considered as
running example for rest of the analysis.

5.1. Service Flow Graph Formation

In this phase, based on the correct ACL implementation {the ACL rules associated to various
network interfaces} service flow graphs are formulated for each network service. A service flow
graph is defined as follows:

Definition 2: A service flow graph GS<DS, IS> under the network service S is defined as a
connected directed sub-graph of the network model N<D, I, F>, where DS ⊆ D and IS ⊆ I such
that ∀IS, F(IS) • action = “permit”.

The definition states that the service flow graph includes only the edges on which corresponding
service access is allowed. The service flow graphs are formed by simply removing the edges
from N which are associated with “deny” rules under a particular service. Then to keep the
graph connected, the disconnecting nodes (a subset of D) are removed. For example, consider
the security policy for our running network access model:

68

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

Policy1: “ssh access is not allowed from ZONE_1 to ZONE_2 whereas the reverse flow is
allowed”

Now, consider the ACL implementation scenario corresponding to the policy:

Implementation1:

Permit ssh(ZONE_2, ZONE_1); Deny ssh(ZONE_1, ZONE_2);

Permit ssh(R1, R4); Permit ssh(R2,R4); Permit ssh(R5, R4);

Deny ssh(R1, R3); Deny ssh(R1, R2); Deny ssh(R2, R3);

Deny ssh(R4, R1); Deny ssh(R2, R5).

The “ssh” service flow graph corresponding to Implementation1 is shown in Fig.4(a).

Similarly, consider the following security policy described in section 1.

Policy2: “Internet (http) access is NOT allowed from the ZONE_1”.

ZONE_1[10.0.0.0/10] ZONE_2 [10.64.0.0/10]

PROXY

R1 R2

R4
R5

SUBZONE_11
 10.0.0.0/16

SUBZONE_12
10.1.0.0/16 SUBZONE_22

 10.65.0.0/16

SUBZONE_21
 10.64.0.0/16

Fig.3 Network Access Model Corresponding to Fig.1

69

R3

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

The Implementation2 shows a correct ACL implementation corresponding to the policy.

Implementation2:

 Permit http(ZONE_2, PROXY); Deny http(ZONE_1, PROXY);

Permit http(R5, R1); Permit http(R5, R2); Permit http(R1, R3);

Permit http(R2, R3); Permit http(R3, PROXY); Deny http(any, any).

Here, the last rule indicates that all the access paths are treated as default “deny” except those
which are explicitly defined prior to the rule. The “http” service flow graph corresponding to
that implementation is shown in Fig.4(b). In this way, service flow graphs are formed under
each network service.

5.2. Fault Analysis under Network Link Failures

The proposed fault analysis problem can be stated as follows: “To find the maximum number
of link failures, the network access model N can tolerate and still satisfy the security policy of
the network”

To solve this problem, we introduce the concept of critical links.

Definition 3: A critical link ECR in a service flow graph, GS is an edge which connects an end
point device, DEi to a network router, DRj; i.e., ∀ECR:{DEi × DRj} ⊆ IE.

These edges are critical because of the fact that the failure of any of these edges makes the ACL
implementation incorrect unless they are associated with “deny” service access rules. In our
analysis, it is considered that there are no critical link failures. However, from the definition of
the service flow graph, it is implied that the critical links with “deny” access control rules do not
exist in a service flow graph. Hence, the critical links are removed from the service flow graphs
prior to the fault analysis procedure.

The fault analysis problem is solved by finding the size of the minimum cut (min-cut) in each
service flow graph GS excluding the critical edges which basically represents the fault tolerance
value (χs) for that service S. Then the minimum of the fault tolerance values associated to
different service flow graphs, i.e., χN = min{χs} is calculated which represents the fault
tolerance value for the complete ACL implementation under the network access model N. The
fault analysis algorithm is presented in Algorithm 3.

Algorithm 3: Fault Analysis on Network Access Model

 ZONE_1 ZONE_2

R1 R2

R4 R5

SUBZON
E_11

SUBZON
E_12

SUBZON
E_22

SUBZON
E_21

 ZONE_2:

PROXY

R1
R2

R3

R5

SUBZONE_22
SUBZONE_21

Fig.4 (a) “ssh” service flow graph; (b) “http” service flow graph

70

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

1. BEGIN

2. FOR each network service S

3. Generate the service flow graph, GS, from the network access model, N

4. END FOR

5. FOR each service flow graph, GS

6. Remove the critical links ECR from the graph

7. Find the min-cut of GS

8. χS = Size of the min-cut of GS

9. END FOR

10. χN = min(χS)

11. Return χN

12. END

There are standard algorithms [21] [22] [23] to find minimum cut in a directed graph which uses
its close relationship to the maximum flow problem. These algorithms find a minimum cut
separating a designated source s from a designated sink node t, and then by varying the sink
node, find a minimum cut in a directed graph G as a sequence of at most 2n-2 maximum flow
problems. However, in the present approach, the efficient algorithm presented by J. Hao and J.
B. Orlin [20] is implemented. It solves the minimum cut problem in a graph in a time Ο(|V||E|
log(|V|2/|E|). The algorithm starts with a source node s ⊆ S and solves (n-1) minimum S-t cut
problems, where each node in {N-{s}} is considered as a sink node for one of these n-1
problems. After having found the minimum cut for sink node t, the algorithm transfer t to S
and select the node with minimum distance label. The algorithm, carefully identifies the nodes
disconnected from the sink in a very efficient manner and labelled those nodes as “dormant”
nodes. More significantly, the algorithm partitions the node set N into two parts W and D=N-W,
where D is the set of “dormant” nodes, and W is a set of nodes that are “awake”. The algorithm
maintains the property that their never is an arc of the “residual network” directed from a
dormant node to a node that is “awake”. This algorithm is used to find the min-cut for each
service flow graph GS. The complexity and detail analysis of the min-cut algorithm [20] is
beyond the scope of the paper.

5.3. Analysis & Discussion

The proposed fault analysis approach has been tested on various security implementations in a
defined network with specific set of security policies. It is to be noted that the verification
module (described in section 4) capable of providing the correct ACL implementations
corresponding to a given policy specification in a network. Table 5 shows the fault analysis on
three such test cases of implementations (described in previous section) under the running
example network.

The result shows that the service wise fault tolerance values corresponding to the
Implementation1 and Implementation2 equal to 1 which means the implementations can tolerate
at most 1-link failure (except the critical links). So, if their combined implementation scenario is
considered (taking both “ssh” and “http” service flow graphs in account), the fault tolerance
value for the network access model N (shown in Fig.3) is the minimum of these values which
equals to 1. So, the complete network access model can tolerate at most 1-link failure as a
whole. In this process, the fault tolerant parameter for any specific ACL implementation can be
determined which indicates the maximum number of link failures the implementation can
tolerate and still satisfy the security policy of the network. It will help the network administrator
to debug the ACL implementations in dynamic changes of network topology due to network
link failures.

71

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

5. CONCLUSION

In today's complex enterprise network (LAN), there is an increasing requirement of validating
the distributed security implementations with the organizational global security policy with
dynamic changes in the network topologies. Moreover, it is more challenging to ensure that the
security implementation satisfies the global policy although there are certain link failures in the
network. In this paper, we have proposed a complete security analysis framework which can
verify the security implementations with respect to a defined policy specification in an
enterprise LAN and also finds the fault tolerance parameter of a correct ACL implementation
(under network link failures). The efficacy of the framework has been aptly demonstrated
through examples and case study. The proposed framework will facilitate in debugging of
network security implementation efficiently in presence and absence of network link failures
and designing conflict free global security policies in a enterprise network.

REFERENCES

[1] Y. Bartal, A. Mayer, K. Nissim and A. Wool. Firmato: A novel Firewall Management Toolkit.

ACM Transaction on Computer Systems, 22(4): 381-420, November 2004.
[2] E. Al-Shaer and H. Hamed. Discovery of Policy Anomalies in Distributed Firewalls. In Proc.

of IEEE INFOCOM’04, pp. 2605-2626, 2004.

[3] P. Eronen and J. Zitting. An Expert System for Analyzing Firewall Rules. Proc. of 6th Nordic
Workshop on Secure IT Systems, pp. 100-107, Denmark, 2001.

[4] E. Al-shaer and H. Hamed. Firewall Policy Advisor for Anomaly Discovery and Rule Editing.
 In 8th IEEE International Symposium on Integrated Network Management, pp. 17-30, Colorado
 Springs, 2003.

[5] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra. FIREMAN: A Toolkit for firewall
 modeling and analysis. In IEEE Symposium on Security and Privacy, Berkeley, CA, 2006.

[6] High Level Firewall Language. Available from http://www.hlfl.org/

[7] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely and C. Pitcher. Specifications of High level
 Conflict-Free Firewall Policy Language for Multi-domain Networks. In 12th ACM Symposium
 on Access control models and Technologies (SACMAT), pp. 185-194, France, 2007.

[8] CISCO: Configuring IP access lists. CISCO white papers 23602 edition, July 2007.

[9] Joshua D. Guttman and Amy L. Herzog. Rigorous automated network security management.
 International Journal of Information Security, vol. 4, pp. 29-48, 2005.

[10] Y. S. Mahajan, Z. Fu, and S. Malik. Zchaff 2004: An efficient SAT solver. Lecture notes in
 Computer Science: Theory and Application of Satisfiability Testing, 3542, pp 360-375, 2005.

[11] C. Zhang, M. Winslet, and C. A. Gunter. On the safety and efficiency of firewall policy
deployment. In IEEE Symposium on Security and Privacy, pp. 33-50, CA, USA, 2007.

[12] R. W. Ritchey and P. Amann. Using model checking to analyze network vulnerabilities. In IEEE
 Symposium on Security and Privacy, Berkeley, CA, USA, 2000.

[13] P. Matousek, J.Rab, O.Rysavy, M. Sveda. A Formal model for network-wide security analysis.
 15th IEEE International Conference and workshop on ECBS, pp 171-181, Belfast, Ireland, 2008.

[14] T. Hofmeister, U. Schoning, R. Schuler, and O. Watanabe. A probabilistic 3-SAT algorithm
 Further Improved. 19th Annual Symposium on Theoretical Aspects of Computer Science,
 Lecture notes in Computer Sc, Vol.2285, Springer-verlag, pp 192-202, 2002.

[15] L. Zhang and S. Malik. Towards Symmetric treatment of Conflicts and satisfaction in quantified
 Boolean satisfiability. In Principles and Practice of Constraint Programming, pp 185-199, 2002.

[16] S. Matsumoto and A. Bouhoula. Automatic Verification of Firewall Configuration with Respect
 to Security Policy Requirements. Proceedings of the International Workshop on Computational
 Intelligence in Security for Information Systems (CISIS'08), Vol. 53/2009, Springer-Verlag, pp.

 185-199, 2009.

[17] QDIMACS Standard Version 1.1. Available from http://www.qbflib.org/qdimacs.html/

72

http://www.qbflib.org/qdimacs.html/
http://www.hlfl.org/

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.2, July 2009

[18] Y. Yu and S. Malik. Yquaffle QBF solver. http://www.princeton.edu/chaff/quaffe.html/

[19] E. Giunchinglia, M. Narrizzano, A. Tacchella. QUBE: A System for deciding quantified boolean
formulas satisfiability. In International Joint Conference on Automated Reasoning (IJCAR), pp.
364-369, 2001.

[20] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. Proceedings of
 the 3rd ACM-SIAM Symposium on Discrete Algorithms, pp. 165-174, Orlando, Florida, 1992.

[21] D. Karger and C. Stein. An O(n2) algorithm for minimum cuts. In proceedings of the 25th ACM
Symposium on the Theory of Computing, pp 757-765, San Diego, CA, NY, USA, May 1993.

[22] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. Journal of
the ACM, vol. 35, pp. 921-940, 1988.

[23] R. K. Ahuja, T. L. Magmanti and J. B. Orlin. Network Flows: Theory, Algorithm and
Applications. Prentice Hall, Englewood Cliffs, N.J, 1992.

[24] P. Bera, Pallab Dasgupta and S. K. Ghosh. A Verification framework for Analyzing Security
Implementations in an Enterprise LAN. Proceedings of IEEE International Advance Computing

 Conference (IACC 09), pp. 1008-1015, March 2009.

Authors:

P.Bera is a PhD scholar in School of Information Technology at Indian
Institute of Technology, Kharagpur, India. He completed his BE in
Computer Science & Engineering from Jadavpur University, Kolkata, India
and ME in Computer Science & Engineering from West Bengal University
of Technology, Kolkata. His research interest includes network and
information system security, distributed systems and formal analysis.

Pallab Dasgupta is a Professor in the department of Computer Science &
Engineering at Indian Institute of Technology, Kharagpur, India. He
completed his PhD degree from the same institute. He currently leads the
Formal Verification research group at IIT Kharagpur, which has ongoing
collaborations with several companies, including Intel, Synopsys, General
Motors and National Semiconductors. His research interests include
Formal Verification, Artificial Intelligence and VLSI. He has over 70
research papers and 2 books in these areas. Dr Dasgupta has been a
recipient of the Young Scientist awards from the Indian National Science
Academy, Indian National Academy of Engineering, and the Indian

Academy of Science. He is a senior member of IEEE.

S.K.Ghosh is an Associate Professor in School of Information Technology at
Indian Institute of Technology, Kharagpur, India. He completed his PhD
degree from the same institute. His research areas include Network Security,
Information System Security, Data Mining and GIS. He is a member of
IEEE.

73

http://www.princeton.edu/chaff/quaffe.html/

	Abstract
	Keywords

