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Abstract 

 

The  degree  distribution  of the Internet topology  is considered  as  one  of its main properties. 

However, it is only known through a measurement procedure which gives a biased  estimate.   This  

measurement  may  in first  approximation be modeled by a BFS (Breadth-First Search)  tree.  We 

explore here our ability to infer the type (Poisson  or power-law)  of the degree distribution from 

such a limited knowledge.  We design procedures which estimate the degree distribution of a graph 

from a BFS of it, and show experimentally (on models and real-world data) that this approach  

succeeds in making the difference between Poisson and power-law degree distributions. 
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1. Introduction 
 

The Internet may be seen as a graph  at several levels: autonomous systems, routers  

and  links  between  them,  or  IP  hops  between  interfaces  for instance. For a decade, 

these graphs  have been at the core of an intense research  activity [10, 15, 23, 27] aimed at 

a better understanding and management of the Internet, which plays a crucial role in our 

society. 

A property of high interest in these graphs is the degree distribution, i.e.  the fraction 

Pk   of nodes with k links, for all k: it may have a strong influence on the robustness of 

the network [2, 20], on protocol design [21], and  on spreading  of information [6, 23]. 

Moreover, it is often claimed that these degree distributions may  deviate significantly 

from  what classical  models  assume  [2,  13, 23, 27], which leads to an intense activity 

on modeling issues [12, 3]. 

However,  the degree  distribution of the Internet topology (at any  of the levels 

cited above)  is not readily  available:   one only has  access to samples  of these graphs,  

obtained through measurement procedures  which  are  intricate, time  and  resource  

consuming,  and  far from complete.   Even  more  important,  these  samples  are  biased  
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by  the measurement  procedure,   which  may  have  a strong influence on the observed 

degree distribution [9, 1, 17, 27]. 

As a consequence, the current situation regarding the degree distribution of the 

Internet is unclear [27, 19, 16, 18]. The relevance of obtained samples regard- ing the 

degree distribution observed from them is far from being established. In particular, there 

is a controversy on whether the Internet topology may have a homogeneous (typically 

Poisson),  or heterogeneous (typically power-law) degree distribution [16, 27].  In order to 

obtain an answer  to this question, the most widely used approach  currently is to 

conduct  larger  and  larger  measurements, in the expectation that these will lead to 

accurate observations [18, 24, 8]. How- ever, this may be a dead end:  the degree 

distribution may be intrinsically biased by the measurement process [1, 17] and in 

practice it may depend  much on the sample size [18]. 

We explore here a completely different approach:  we consider a simple model of 

Internet topology measurements and  try to derive  the type of the degree distribution 

of the underlying  graph  from this limited observation.  Our  basic goal therefore is to 

answer the following question: given the limited information obtained from 

measurement, does the underlying  topology more likely have  a power-law or a Poisson 

degree distribution? 

In many cases (traceroute measurements, BGP tables, and AS-level trace- route, 

typically), the measurement process  may  be approximated by  a  BFS (Breadth First 

Search)  tree from a given node of the network. Indeed,  Internet measurements mostly 

consist in  sets of routes  (i.e.   paths in  the considered topology) going  from  a  

monitor to a  set of targets,  collected from  as  many monitors as possible.  Since each 

route is modeled as a shortest path and  since one may expect routes to have long common 

prefixes, the view from each monitor may be approximated by a BFS. Although this is a 

rough approximation, in the lack of a widely accepted and better solution, it has been used 

in many occasions [17, 22, 1, 25, 9]. 

Deciding on the degree distribution from such a view is a challenging  task, and  we 

will make a few assumptions in order to make a first step towards this ambitious goal.  

We first assume  that the size of the graph,  i.e.  its number  of nodes n,  is given.  In the 

case of the Internet, this  is a reasonable  assumption [25, 14].   In  addition, we will 

assume  that the underlying  graph  is a random graph  with either a Poisson  or power-

law  degree distribution.  And  finally, we assume  that we have  a complete  BFS  of the 

considered  graph:   all nodes (but not all links) in the graph  are reached  by the 

exploration.  Finally,  we assume that the number  of links m of the graph  is known.  It is 

clear that the last two assumptions are  very  strong, and  are  not attainable in practice.  

We however consider them as reasonable  for a first approximation, and give hints of how 

to get rid of the knowledge of the number  of links in the last section of the paper. 

This  paper  contains six main  sections.   We  describe  our  methodology in Section  2.   

It relies  on  several  strategies  to infer  a  degree  distribution  from a BFS,  which  we 

detail in Section 3.  In  Sections 4 and  5 we experimentally evaluate the validity of our  

approach  on model graphs  and  real-world  graphs respectively.  In Section 6, we propose 

a method to reduce the initial information needed by our approach. We discuss 

limitations and future work in Section 7. 
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Figure 1:  Scheme of  our method.   G  is  an unknown graph on  which  we  perform a 

measurement which gives its number of  nodes n, its  number of  links m and a BFS T .  We   

then  consider two different  hypotheses:  G  has a Poisson degree distribution  with  average 

degree  λ or it has a power- law degree distribution  with  exponent  α.  We  build two  graphs 

G1  and G2  each with  a strategy in  accordance  with  the corresponding hypothesis.  We  then  

compare the degree  distribution  of  G1 to the expected  one  of  G  if  hypothesis  1  is  true,  and 

the one  of  G2  to the expected  one  of  G  if hypothesis 2 is true.  The hypothesis which leads to 

the most similar degree distributions is expected to be  correct. 

2. Methodology 

Our  methodology  is sketched  in Figure  1.  It aims  at deciding  the type  of the 

degree distribution of an unknown  graph  G from one of its BFS tree T , its number of 

nodes n and its number of links m obtained through a measurement. To do so, we 

consider the two following hypotheses: 

 
 

For each hypothesis, we build a graph according to a strategy which we detail in 

Section 3, thus obtaining G1 and G2, respectively. Our expectation is that if hypothesis 

H 1 is true (G is Poisson) then the degree distribution P 
G1  

of G1 will be closer to the 

theoretical distribution P 
(1)  

than P 
G2  

to P 
(2) 

, and conversely if H 2 is true (G is 

power-law)  then  the degree distribution  P 
G2   

of  G2 will be closer to P 
(2)  

than P 
G1   

to P 
(1) 

.   To  compare  two  distributions,  we will use different distances D (we will 

define several below) and  compare  D(P 
(1) 

, P 
G1 

) to D(P 
(2) 

, P 
G2 

). 
 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012 

154 

 

We experimentally assess the validity of this approach  by applying it to cases where we 

know the original graph G (we obtain such graphs using models in Sec- tion 4 and  using 

real-world  data in Section 5).  We then compare  the expected theoretical degree  

distribution to the ones of the graphs  obtained from  each strategy and check 

conformance of results with expectations. Comparing  distri- butions is a challenge itself, 

for which no general  automatic procedure  is com- monly accepted.  To perform  this, we 

will use two complementary approaches: visual inspection of plots of the inverse 

cumulative degree distributions (ICDD), together  with  two  classical statistical  tests,  the 

Kolmogorov-Smirnov test [11] and Statistical Distance [5] distances, defined as: 

 

 
In Section 6, we extend our approach  to get information on the degree dis- tribution 

of a graph  when the number  of links is not known,  which is a more realistic  assumption.   

In that case we use our  rebuilding  strategies  for a wide range of possible values of m 

and infer the most probable  type of degree distri- bution as previously,  see Figure  2. 

3. Building strategies 

Starting from  a  BFS  T  of a  graph  G  with n  nodes  and  m  links  and  an 

hypothesis (H1 or H2) on the degree distribution of G (type Poisson or power- law),  our 

objective  here is to iteratively  add  m − n + 1 links to T in order  to build a graph  G
′  

with n nodes, m links, and  degree distribution similar to the one of G.  We define 

different link addition strategies according to the supposed type  of G, Poisson  or power-

law.   And  in each case, we show how to compute the degree distribution of the 

resulting graph. 

 

3.1.  H1:  G is Poisson  (RR  strategy) 

 

 

We  may  think  of building  a graph  G
′   

similar  to G  by  using  a variant of the ER 

construction:  starting with the n nodes and  n − 1 links of a BFS tree T , the m − n + 1 

missing links are randomly  added  as in the ER  model.  But then  T  may  not  be a 

possible BFS  of G
′ 
:  any  link in G which is not  in T  is necessarily  between  two  nodes 

in consecutive  levels of T , or in the same level of T (otherwise  T would not  be a 
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shortest  path tree  and  thus  not  a BFS,  see Figure  3).  In order  to ensure  that T is also 

a possible BFS of G
′  

we therefore add  links only between  nodes in consecutive  levels or 

in the same level.  Since both extremities of links are randomly  chosen, we call this 

construction the RR (Random-Random) strategy. 

 
 

 
 

 

Figure 2:  Scheme of  our method,  in  the case when m is  unknown.   G is  an unknown graph 
on which we  perform a measurement which  gives its number of  nodes n and a BFS tree  T .  
We  then consider  two different type of  hypotheses:  (H1) G  has a Poisson degree  distribution  
with  average degree λ or (H2) it has a power-law  degree  distribution  with  exponent  α. Both  

parameters  λ and α are  equivalent to the number of  links m.  Then we  build two families of  

graphs G1,m  and G2,m in accordance with these two hypothesis and different m. We  then 

compare the degree distribution of  G1,m  to the  expected  one  of  G  if (H1) is  true, and the 

one  of  G2,m   to  the  expected  one  of  G  if (H2) is true. The hypothesis which leads to the 
most similar degree distributions is expected to be correct. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Let us  consider a part of a BFS of G, composed of a set of links A-B, A-c, B-D, C-E 

and 
C-F. Links B-E and D-E may also be  present  in  G, but not  link A-F. 
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We now show that the expected node degree distribution of G
′  

obtained with 

the RR strategy can be directly computed from n, m and T without explicitly 

constructing G
′ 
. 

 

 
 

Theorem 1. Given a tree T with n nodes, if we construct a graph G′  using the 

RR strategy,  then the expectation  of a node v with degree l in G
′  

is: 

 

 

 
 

As each newly added  link impacts two nodes, the values of P (k → l, j) are 

independent  from the other  P (k
′   
→ l
′ 
, j
′ 

).  We will consider  that this  impact can  be  

ignored,  when  n  and  m  is large  enough.    From  this  result,  one may estimate  the 

expectation  of the degree  distribution  of G
′   

from  n,  m  and  T , without  constructing  

it  explicitly.   This  is of high  interest  in  practice,  since it allows  to compute  the 

expectation  of degree  distribution  and  compare  it with degree distributions obtained 

by the constructing strategies.  Going further would however need precise results on the 

expectation of degrees in T , which is a difficult problem  [1]. 
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3.2.  H2:  G is power-law (PP strategies) 

Suppose now that G is a power-law  graph.   We therefore  aim at designing a process  

which  builds  from a BFS  T  of G,  a graph  G
′   

with power-law  node degree 

distribution.  To do this, as before, we add m − n + 1 links between nodes in appropriate 

levels of T .  However, these pairs  of nodes are no longer chosen uniformly at random.  

Instead, we use a selection scheme inspired from the pref- erential  attachment of the 

classical  Barabási-Albert  model  [4]:  we choose (in the appropriate levels) nodes 

randomly  with probability proportional to their degree in T .  As we choose both  

extremities  of added  links according  to pref- erential attachment, we call this procedure  

the PP  (Preferential-Preferential) strategies. 

We now show how to compute, for this strategy, the expected obtained degree 

distribution. 
 
Theorem 2. Given a tree T with n nodes, if we construct a graph G′  using the 

PP  strategy,  then the expectation  of a node v with degree l in G
′  

is: 

 
 
 

′ where njk  is the number of nodes with degree k at level j in T and P (k → l, j, m
′ 
) is the 

probability that  a node v with degree k at level j in T is constructed as a node with 
degree l in G

′  
after  m

′  
links have been added into T . 

 

Computation process..   The term P (k → l, j, m
′ 
) may be obtained recursively: 

 
 

We split  P (k → l, j, m
′ 

) into  two  parts which correspond  to two  cases (linked to this  

node or not) when a new link is added.   The  probability  that a newly added  link 

changes the node from degree k to k + 1 is denoted by θ. 

In the following, we compute θ using four terms: 
 

• θ1 : the probability that the node v is selected as the first endpoint of the newly 

added  link. 
 

• θ2 : the probability that a node at upper level j − 1 is selected as the first 

endpoint, and v is selected as the second endpoint. 
 

• θ3 : the probability that a node (except v) at level j is selected as the first 

endpoint, and v is selected as the second endpoint. 
 

• θ4 : the probability that a node at lower level j + 1 is selected as the 

first endpoint, and v is selected as the second endpoint. 
 
 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012 

158 

 

The sum of degrees of all nodes at the level i after t links have been added is di,t .  

In the following, we give the details of how to calculate for the case of PP  strategy. 

 

 

 
 

Using  equation  (9)  in the expressions  (8)  shows that dj,t   is a function  of dj′ ,t−1 , 

which can be calculated by dynamic  programming techniques. 

  Our  computation process is not exact, since we have neglected to take into account 

possible collision, i.e.  positions to be selected several times.  However, since we deal  

with sparse  graphs,  in the case of model graphs  as well as real graphs,  the number  of 

links to be added  to the BFS tree is much smaller than the number  of possible 

positions, and  so there are very few collisions.  From  a practical viewpoint, in the 

building  process, we just ignore multiple links. 

 

4. Validation  using model graphs 

Our expectation is that the strategies described  in previous  section succeed in building  a 

graph  G
′   

similar  (regarding  degree distribution) to G when the appropriate strategy 

is used with an appropriate graph  (RR if G is Poisson, PP if G is power-law). 

In addition,  we expect  that the degree distribution  of G
′ 

will differ significantly from 

that of G if a wrong strategy is applied  (RR if G is power-law, PP if G is Poisson).  In 

this section we conduct experiments on model graphs, i.e.  random  graphs in the classes of 

Poisson graphs or power-law graphs with  given parameters  (average  degree and  
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D
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D
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exponent  respectively).  To ensure that the BFS covers all nodes of the graph,  we use a 

software which generates random  simple connected  graphs according to a given degree 

sequence (sampled from the given degree distribution) [26]. 
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Figure 4:   Reconstruction  of  a graph Poisson 3  and Poisson 10.    We  draw the ICDD (Inverse 

Cumulative Degree Distribution) for three graphs: the original graph G and the ones obtained 

with the RR  and the PP strategies.   Horizontal  axis: degree k;  vertical  axis:  fraction  of  the 

number of nodes with  degree lower than or equal to  k. 
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4.1.  Poisson  graphs 

In Figure 4 we present the results for Poisson graphs  with average degrees 3 and 10. 

The  degree distribution obtained with RR strategy is closer to the original one, as 

expected. This is confirmed by the KS and SD statistics (Table  1): the smallest values are 

obtained with RR strategy. 

Notice that a Poisson graph  with a higher degree gives better results.  This is probably  

due to the fact that we add more links in this case, and so strategies for doing this make 

much more difference. 

 

 degree

Figure 5: Reconstruction of a graph power-law 2.1 and 2.3. We draw the ICDD for three graphs: the original graph G, 

and the ones obtained with the RR and the PP strategies. 

 

. 

Finally,  we conclude that our method succeeds in recognizing random  Pois- son graphs.   

This  is true for all average  degrees,  but performs  best  on graphs with a relatively high 

average  degree. 

 

4.2.  Power-law  graphs 

Similar  to Poisson  model graphs,  we conduct our experiments  with power- law model 

graphs. 

In Figure 5 we present obtained results for power-law graphs  with exponent 

2.1 and 2.3. To better show the characteristic of the power-law, all plots are in log-log scale.  

Both the ICDD  plot and  the statistic test (Table  2) support our conclusion for all 

exponents and all sizes. 
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Table 2:  KS and  SD for power-law model graphs 

 

Power-law  2.1 Power-law  2.3 

 n = 10000 n = 100000  n = 10000 n = 100000 

 KS SD KS SD  KS SD KS SD 

RR 0.201 0.432 0.194 0.405 RR 0.278 0.591 0.274 0.553 

PP 0.038 0.138 0.049 0.180 PP 0.030 0.086 0.024 0.095 
 

 
 

1  1 
G  G 

RR RR PP  PP 

 
 
 
 
 
 
 
 
 
 

Figure 6: ICDD of the Skitter and Radar graphs G and the ones obtained with RR and PP 

strategies. 
 
 

Table 3:  KS and  SD for Skitter 

graph. 
 

 KS SD 

theory-RR 0.166 0.359 

theory-PP 0.082 0.235 
 
 
 

5. Experiments  on real-world data 
 

Previous  section shows that our method succeeds in making  the difference between 

Poisson  and  power-law  random  graphs.   It is clear  however  that, in practice, considered  

graphs  have neither perfect Poisson  nor power-law  degree distribution, and are not 

random. 

We consider  in this section several  real-world  datasets among  the current largest 

measurements of the Internet topology.  Although obtained graphs  are still  partial views 

and  probably   are  strongly  biased,  they  constitute  current state-of-the-art of available  

data and we use them as benchmarks. 

Like in previous  section,  for each  case of real-world  graph  G,  we consider two 

hypotheses:  (H1) G has a degree distribution close to a Poisson  law; (H2) G has a 

degree distribution close to a power-law.  Using strategies RR and P P , 
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5.1.  Skitter  graph 

We first try our method on an AS-level map collected by the Skitter project of 

CAIDA [15]. The obtained graph  has 5776 nodes and 12025 links. 

Figure 6 (left) shows the ICDD obtained with our strategies and shows that the entire 

Skitter graph follows a degree distribution of type power-law (a perfect power-law in a 

log-log scale is a straight line).  The  distribution obtained with RR strategy is clearly far 

from a power-law.  The one obtained with PP  strategy is much  closer.  Table  3 confirms 

this,  even though  the difference between  the RR strategy and the PP  strategy is as 

strong as for model graphs  (see Table  1 and 2). 

Finally,  our method succeeds in deciding that the Skitter graph has a degree 

distribution close to a power-law. 

 
 

Table 4:  KS and  SD for Radar 

graphs. 
 

 KS SD  KS SD  KS SD 

Cm Japon Ortolan 

RR 0.064 0.151 RR 0.074 0.202 RR 0.062 0.156 

PP 0.241 0.521 PP 0.163 0.363 PP 0.213 0.476 

 
 
 

5.2.  Radar  graphs 

A radar  graph is a part of the Internet topology observed by periodic running 

traceroute-like measurements from one monitor to a set of targets during several weeks, 

See [22] for details  and  the original  data.  We use here three  instances of radar  graphs,  

from  three different monitors:  Cm  (21430 nodes  and  37938 links),  Japon (27066  

nodes  and  77545 links)  and  Ortolan  (24725  nodes  and 48516 links). 

In  Figure  6 (right), we plot the ICDD  of Radar-Japon graph  and  those obtained 

by the RR  and  the PP  strategies.  The  shape  of the original  ICDD indicates that the 

degree distribution of the underlying  graph  is likely to be a mixture of both Poisson and 

power-law. 

Table  4 shows numerical results for the three radar  graphs.  All results show that the 

difference between the RR  strategy and  its corresponding  theoretical distribution is 

smaller  than that of the PP  strategy.   Therefore  our  method decide that the type  of 

the radar  graphs  is more  likely Poisson  even  though their  distributions  have  a long-

tail.  Note  that the difference between  RR  and PP are much smaller than for previous 

cases, thus indicating that the confidence in the conclusion is poor. 

Finally,  our method decides that Radar  graphs  are more likely to have Pois- son degree 

distribution, but with poor confidence (which is in accordance  with their actual type). 
 

 

6. Deciding without  m 
 

The  goal  of this section is to decide  the type of degree  distribution and estimate  m  

for an  unknown  graph  G,  using  only  n  and  one  of its  complete BFS  tree  T .   We  

proceed  as follows:  for each  building  strategy,  we compute the KS distance between 
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the obtained distribution and  the theoretical one for a wide range of realistic values of 

m:  for each value of m we compare  with KS the distance between the theoretical 

distribution corresponding  to m and  the distribution  of the graph  resulting  from the 

building  strategy.   We  then  plot this statistics  and  select  the value  m
′   

which gives 

the minimum  KS value.   If the minimum  value  is given by the RR  strategy, we 

conclude  that the degree distribution of the original  graph  is Poisson,  whereas  if m
′   

is 

given by the PP strategy, we conclude that the degree distribution is power-law (Figure  

2).  The RR strategy is conducted with average  degree from 2 to 50, with step 0.1. The 

PP  strategy is conducted with exponent from 2.05 to 2.40, with step 0.05. 

       In the following we only mention the results of KS tests, but the result with SD are 

similar. 
 

Table 5:  Results for Poisson model  graphs 
 

n=1000 KS m m’ n=10000 KS m m’ 

Poisson 3 0.068 1500 2085 Poisson 3 0.027 15000 23750 

Poisson 5 0.074 2500 2835 Poisson 5 0.025 25000 36250 

Poisson 10 0.096 5000 5650 Poisson 10 0.041 50000 68750 

 

 

 
 

Figure 7:  KS  obtained  for a Poisson model graph with  average  degree 3. In  both figures, we  

plot KS  as a function of  the estimated  degree.  In  the left  figure we  use  the RR strategy,  

which shows minimum KS  of  0.05 in  the region of  λ = 4. In  the right  figure we  use  the 

PP strategy  , which shows much bigger KS’s. Thus we  conclude to a Poisson graph. 

 

6.1.  Poisson  graphs 
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Table 6:  Results for power-law model  graphs 

 
n=1000 KS m m’ n=10000 KS m m’ 

power-law 2.10 0.07 4233 3002 power-law 2.10 0.06 42326 28129 

power-law 2.15 0.09 3662 2936 power-law 2.15 0.04 36622 25043 

power-law 2.20 0.07 3220 2550 power-law 2.20 0.03 32198 25043 

power-law 2.25 0.07 2873 2418 power-law 2.25 0.03 28730 21085 

power-law 2.30 0.06 2598 2168 power-law 2.30 0.03 25982 21377 

power-law 2.35 0.05 2378 2200 power-law 2.35 0.02 23780 20534 

power-law 2.40 0.06 2200 2109 power-law 2.40 0.02 21996 20274 

 

 

 
 

Figure 8: KS for a power-law model graph with exponent 2.2. The left figure is the estimation 

with the RR strategy  with  a minimum  greater  than 0.1. The right  figure is  the estimation  

with  the PP strategy  with  a minimum less  than 0.1 

 
 

6.2.  Power-law  graphs 

In Table 6 and Figure 8, we give the result of our experiments for power-law graphs  

with exponents between 2.10 and 2.40. 

Again,  the method succeeds in deciding the appropriate type of the graph: with PP, 

the value of the KS test is smaller than with RR.  The estimate m
′   

is reasonable,  but 

lower than the actual value. 

 
6.3.  Real-world graphs 

Finally,  we apply  our  method  on some real  world  graph,  see Table  7 and Figure  9. 
 
 

Table 7:  Results for real-world 

graphs 
 

 RR PP m m
′ 

Skitter 0.109 0.091 12822 7683 

Radar-Orlanto 0.150 0.435 48516 49450 

Radar-Japon 0.067 0.162 77545 79041 

Radar-Cm 0.051 0.225 37938 49289 
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Figure 9:  KS  for  Skitter-AS  graph. 

 

As before, our method  succeeds in deciding  that the Skitter  graph  is very close to a 

power-law  graph,  while radar  graphs  are closer to a Poisson  graph, but are actually in 

between, the both cases, we obtain reasonable  estimates m
′ 

of the number  of links m. 
 

 

7. Conclusion 
 

In  this paper,  we presented a new approach  to decide  on the type of the degree 

distribution of a graph  when only a BFS and its size are known.  We use different 

strategies to reconstruct a graph  from a BFS, according to the presup- posed  type of the 

graph.   We then show how these strategies allow to decide between Poisson and power-

law degree distributed graphs,  with experiments on random  graphs  as well as real-world  

graphs. 

We worked  on two  sets  of hypotheses:  we first  supposed  that, in addition to a BFS  

T  on the n  vertices of the unknown  original  graph  G,  we know its number  of edges  

m:   in  this case  we formally  compute the expected degree distribution of the graphs  

obtained with the different reconstructing strategies; moreover  experiments on random  

graphs  confirm that the knowledge of a BFS and  m  allows  to recognize  the type of the 

graph.    Second,  we use  the same reconstruction strategies without knowing the number  

of edges m, and  we can still reasonably  predict the type of the original graph. 

The main limitation of our contribution is that we suppose the knowledge of a 

complete BFS of the unknown  graph.  This hypothesis is not realistic, though, since 

practical measurements rather provide  only paths to a subset of the real graph  vertices.   

Our  main  perspective therefore is to reduce  requirements on data, and  design 

strategies needing  truncated BFS (BFS  until a certain level) only, and partial BFS 

(that do not contain all vertices of the graph).  Assuming that such measurements are 

available  is much more realistic[22]. 

In future work, we also want to improve our method by investigating various 

refinements: (i) design reconstruction strategies taking into account more subtle 

properties  of the BFS,  such as node distribution  on each level, and  also other local 

properties such as the clustering coefficient; (ii) extend the reconstruction strategies in 

the direction of other types of distributions:  a first step would be to mix RR and PP  

strategies for mixed Poisson power-law graphs,  but we also aim at investigating power-

laws with exponential cut-off, and other laws. 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012 

166 

 

Acknowledgements 

This  work is partly funded  by the European Commission  through the EU- LER  

project (grant 258307), part of the Future  Internet Research  and  Experi- mentation 

(FIRE) objective of the Seventh Framework  Programme (FP7). 
 

References 

[1]  D. Achlioptas, D. Kempe, A. Clauset, and C. Moore. On the bias of tracer- oute sampling:  or, 

power-law degree distributions in regular  graphs.  ACM Symposium on Theory  of Computing,  

pages 694–703, 2005. 

[2]  R.  Albert, H. Jeong, and  A.-L.  Barabasi.  Error  and  attack tolerance of complex networks.  

Nature,  406(6794):378–382, July 2000. 

[3]  D. Alderson,  L. Li, W. Willinger,  and J. C. Doyle. Understanding internet topology: 

principles,  models, and validation. IEEE/ACM Transactions on Networking, 13(6):1205–1218, 

December 2005. 

[4]  A. L. Barabási, R. Albert, and  H. Jeong.  Mean-field theory for scale-free random  networks.   

Physica  A: Statistical Mechanics  and  its  Applications, 272(1-2):173–187, October 1999. 

[5]  M. Basseville.  Distance measures  for signal processing and  pattern recog- nition.  Signal 

Process., 18:349–369, December  1989. 

[6]  N. Berger, C. Borgs, J. T. Chayes,  and A. Saberi.  On the spread  of viruses on the internet. 

Proceedings  of the sixteenth annual  ACM-SIAM symposium on Discrete  algorithms,  pages 

301–310, 2005. 

[7]  B. Bollobas.  Random  Graphs.  Cambridge  University Press,  January 2001. [8]  K.  Claffy,  Y. 

Hyun,  K.  Keys,  M. Fomenkov,  and  D. Krioukov.   Internet Mapping:  From Art to Science. 

Cybersecurity  Applications  and Technology Conference  for Homeland  Security,  pages 205–211, 

March  2009. 

[9]  L. Dall’asta, I. Alvarez-Hamelin, A. Barrat, A. Vazquez, and A. Vespignani. Exploring networks  

with  traceroute-like  probes:  Theory  and  simulations. Theoretical Computer  Science, 

355(1):6–24, April 2006. 

[10]  B. Donnet and T. Friedman. Internet topology discovery:  A survey.  Com- munications 

Surveys & Tutorials, IEEE,  9(4):56–69, 2007. 

[11]  W. T. Eadie, D. Drijard,  F. E. James, M. Roos, and B. Sadoulet. Statistical methods  in 

experimental  physics.  American  Elsevier  Publishing Co, June 2008. 

[12]  A. Fabrikant, E. Koutsoupias, and  C. Papadimitriou.  Heuristically Opti- mized Trade-Offs:  

A New Paradigm for Power  Laws in the Internet.  Au- tomata, Languages  and Programming, 

2380:781, January 2002. 

[13]  M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet 

topology.  SIGCOMM:  Conference  on Applications, technolo- gies, architectures, and  

protocols  for computer  communication, 29(4):251– 262, October 1999. 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012 

167 

 

[14]  J. Heidemann,  Y. Pradkin, R.  Govindan, C.  Papadopoulos, G.  Bartlett, and  J. Bannister.  

Census  and  Survey  of the Visible Internet.  8th  ACM SIGCOMM  conference  on Internet 

measurement, pages 169–182, 2008. 

[15]  D.  Krioukov,   F.  Chung,  K.  Claffy,  M.  Fomenkov,   A.  Vespignani,   and W. Willinger.   The  

Workshop  on Internet Topology  (WIT) Report.  SIG- COMM Computer  Communication 

Review, pages 69–73, Dec 2007. 

[16]  B.  Krishnamurthy and  W.  Willinger.    What are  our  standards for vali- dation of 

measurement-based networking research?    ACM SIGMETRICS Performance Evaluation  

Review, 36:64–69, August 2008. 

[17]  A. Lakhina,  J. W. Byers, M. Crovella,  and  P.  Xie.  Sampling  biases in IP topology 

measurements.  INFOCOM:  22th  Conference  on  Computer  and Communications Societies,  

1:332–341, 2003. 

[18]  M. Latapy and C. Magnien.  Complex Network Measurements:  Estimating the Relevance  of 

Observed  Properties.   INFOCOM:   27th  Conference  on Computer  Communications, pages 

1660–1668, May 2008. 

[19]  L.  Li,  D.  Alderson,  W.  Willinger,  and  J. Doyle.   A  first-principles ap- proach  to 

understanding the internet’s router-level topology.  SIGCOMM: Conference  on Applications, 

technologies,  architectures, and  protocols  for computer  communications, 34(4):3–14, October 

2004. 

[20]  C. Magnien,  M. Latapy, and J.-L. Guillaume.  Impact of Random  Failures and  Attacks on 

Poisson  and  Power-Law  Random  Networks.  ACM Com- puting Surveys, Aug 2009. 

[21]  D. Magoni and  J.-J. Pansiot.  Influence of Network Topology  on Protocol Simulation.  

International  Conference  on Networking,  2093:762–770, June 2001. 
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