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ABSTRACT 

The similarity between trajectory patterns in clustering has played an important role in discovering 

movement behaviour of different groups of mobile objects. Several approaches have been proposed to 

measure the similarity between sequences in trajectory data. Most of these measures are based on 

Euclidean space or on spatial network and some of them have been concerned with temporal aspect or 

ordering types. However, they are not appropriate to characteristics of spatiotemporal mobility patterns 

in wireless networks. In this paper, we propose a new similarity measure for mobility patterns in cellular 

space of wireless network. The framework for constructing our measure is composed of two phases as 

follows. First, we present formal definitions to capture mathematically two spatial and temporal 

similarity measures for mobility patterns. And then, we define the total similarity measure by means of a 

weighted combination of these similarities. The truth of the partial and total similarity measures are 

proved in mathematics. Furthermore, instead of the time interval or ordering, our work makes use of the 

timestamp at which  two mobility patterns share the same cell. A case study is also described to give a 

comparison of the combination measure with other ones. 
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1. INTRODUCTION 

With the development of mobile computing and wireless communications, discovering 

knowledge about the movement of various groups of mobile objects in wireless networks has 

become critical in their mobility prediction. Although different mobile objects express 

differences in their movement behavior and the nature of their movement but they typically 

share similarities [1]. Discovering such similarities contributes significantly to predicting the 

next location of a mobile object based on the behaviors of members in a group. 

In our work [2], the prediction of the next location of a mobile object is only based on its 

own movement history. However, the incompleteness on information of movement history 

results in the lack of extracted mobility rules and may affect the accuracy of prediction. In this 

paper, we consider that with knowledge of groups to which a mobile object belongs, one can 

derive common behaviors among objects during their moving. Therefore, it is possible to 

predict the next location of an object based on the movement behavior of its group. And in turn, 
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the behavior of a group of mobile objects is determined in terms of the similarity of movement 

patterns, which represent a homogeneous kind of correlations of behaviors of objects in wireless 

networks. The analysis of moving objects (i.e., entities whose positions or geometric attributes 

change over time) has recently attracted a great deal of studies, especially, investigating their 

trajectories (i.e. paths objects passed through in space and time). Measuring the similarity 

between trajectories and then clustering them are becoming crucial for movement prediction of 

mobile objects [3]. 

Approaches for computing the similarity between sequences in trajectory data of moving 

objects may be grouped into two classes. On the one hand, the methods based on Euclidean 

space such as in [4] [5] [6] [7] [8] consider similarity with the Euclidean distance. On the other 

hand, some works [9] [10] [11] have investigated the spatial and temporal properties of patterns 

but with interval temporal aspect. And then two patterns passing through the same area at 

different times are considered to be similar. These measures may be not appropriate to 

spatiotemporal characteristics of cellular space in wireless network. A more detail description 

and analysis of these measures are postponed to Section 2. 

Our contribution in this paper is to introduce a new similarity measure of mobility patterns. 

Our approach to constructing a such measure is to deal with two constraints. First, the measure 

should be based on the characteristics of the mobility in wireless network, in which a location of 

mobile objects is referenced with the cell identifier. Second, the measure needs to represent 

spatial and temporal similarities simultaneously. It means that two patterns passing through the 

same cell at the same time must be considered more similar than the case where there is no 

common timestamp. Our similarity measure is computed as a weighted combination of spatial 

and temporal ones. The assertion on its truth will be presented in mathematical proof and then a 

comparable computation between this measure with some other measures is given in a case 

study. 

The remainder of this paper is constructed as follows. In Section 2, a review of approaches to 

similarity measurement in trajectory data is introduced. Section 3 presents the model of the 

mobility in wireless networks and Section 4 investigates a new similarity measure between 

mobility patterns. In Section 5, we describe a case study for comparing various similarity 

measures of mobility patterns. Section 6 is some discussions. Finally, Section 7 draws 

concluding remarks and further work. 

2. OVERVIEW OF SIMILARITY MEASURES 

2.1. Similarity Measures for Euclidean Space 

The similarity measures for trajectory data in Euclidean space with the referenced location of 

coordinates have been widely considered in various research areas. Lin et al. [4] proposed a 

searching method for similar trajectories by focusing on the spatial shapes and comparing 

spatial shapes of moving object trajectories. Searching algorithms based on evaluating OWD 

(one way distance) in both continuous and discrete cases of the trajectories have been 

developed. However, their searching scheme OWD is time independent and based on Euclidean 

distance. Therefore, it is not appropriate to comparing two trajectories in cellular space of 

wireless network. 

Another method for measuring the similarity between trajectories based on spatio-temporal 

representation was introduced by Zeinalipour-Yazti et. al. [5]. They proposed a distributed 

spatio-temporal similarity measure using the LCSS (longest common subsequence) distance. 

Their approach performs local computations of partial lower and upper bounds at each cell and 

then combines these partial results to give upper and lower bounds. However, this scheme also 

assumes Euclidean space, it is difficult to apply it to spatial networks [11]. Some other effective 

similarity measures were proposed in [6] [7] [8] but they have the same representation of 
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Euclidean space as [4] [5]. Due to the spatial and temporal properties of wireless networks, 

these methods are no longer useful. 

2.2. Similarity Measures without Temporal Aspect 

The most important studies of similar trajectories which are suitable for spatial networks are 

presented in [9] and [10]. These studies consider that geographically close trajectories may not 

necessarily be similar since the activities implied by nearby landmarks they pass through may 

be different. Jia-Ching Ying et. al. [9] proposed a novel approach for measuring the semantic 

similarity between trajectories, namely, Maximal Semantic Trajectory Pattern Similarity 

(MSTP-Similarity). After transforming the geographic trajectory set to the semantic trajectory 

dataset, they utilized the sequential pattern mining algorithm Prefix-Span to mine the frequent 

semantic trajectories called semantic trajectory patterns. And then they used the Longest 

Common Sequence (LCS) of two patterns to represent their longest common part and defined 

MSTP-Similarity based on the participation ratio of the common part to a pattern. MSTP-

Similarity argued that two trajectory patterns are more similar when they have more common 

parts. However, the disadvantage of this model is that it did not take temporal property into 

account. For example, two trajectory patterns passing through the same area at different times 

are considered to be similar. Consequently, it is not suitable to spatio-temporal domains. 

A similarity measure based on sequential mobility patterns with time and space has been 

considered by Pandi et. al. [1]. They stated that the main feature of sequence data is the order of 

sequential elements. Thus, they proposed a new sequence similarity measure that focused on the 

ordering feature of sequences. Their evaluation results showed the superiority of the measure 

compared to other evaluated measures. However, this method has the same problem of temporal 

property as [9]. 

2.3. Similarity Measures of Networks with Simultaneously Spatiotemporal 

Consideration 

To the best of our knowledge, studying the spatial network constraints by taking both spatial 

and temporal properties of patterns into account is satisfactory. Firstly, the work given by 

Tiakas et. al. [12] used the network distance instead of the Euclidean distance. The spatial 

network is modeled as a directed graph, and the network distance is defined by using algorithms 

for shortest paths between the nodes of the graph as follows. Let Dnet(Ta, Tb) be a distance 

between two trajectories ),...,,( 21 amaaa vvvT = and ),...,,( 21 bmbbb vvvT = of length m. Then 
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where { })(,),,(max GVvvvvcD jijiG ∈∀=  is the diameter of the graph G of the spatial 

network. In addition to Dnet(Ta, Tb), they also compute the time similarity Dtime(Ta, Tb) between 

two trajectories as follows: 
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In order to take both spatial and temporal properties into account, they combined the two 

distance measures Dnet and Dtime into a single one: 

),(.),(.),( batimetimebanetnetbatotal TTDWTTDWTTD +=  
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where Wnet + Wtime=1 

The advantage of this approach is that it utilizes network distance and takes into 

spatiotemporal aspects account simultaneously. However, geographically close trajectories may 

not necessarily be similar in some real applications [9]. For example, in Figure 1, although the 

geographic distance between Trajectory 1 and Trajectory 2 is closer than that between 

Trajectory 1 and Trajectory 3, both Trajectory 1 and Trajectory 3 pass through the same 

locations <School, Park, Restaurant>. Thus,  Trajectory 1 and Trajectory 3 are considered more 

similar to each other than to Trajectory 2. Such an approach is inconvenient to apply to our 

model of wireless network. 

 

 

 

 

 

Figure 1.  An example of similar trajectories [9]  

Secondly, Kang et. al. [13] used cellular space instead of Euclidean space in order to 

construct the similarity between the patterns of moving objects. According to [13], the location 

is referenced by cells rather than coordinates in real world. For example, we refer the location of 

an object in a building by the room number. In order to process a spatial query “Who are in the 

room 406?”, the location referenced by room identifier is more useful than (x, y) coordinates. 

Based on this observation, Kang et. al. defined two similarity measures by using LCSS, which 

had been originally proposed to analyze the similarity between sequences. Furthermore, they 

simultaneously take spatial and temporal properties of trajectory patterns into account which are 

not fully considered by LCSS. Firstly, Kang et. al. defined spatial similarity LCSSa,b(n, m) where 

a and b are two trajectory patterns and n and m are the numbers of cells visited by a and b 

respectively as follows: 
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where ai.c and bj.c are the i-th and j-th visited cell by a and b respectively. The LCSS means the 

longest common sequence of cells of patterns. A large value of LCSS means that two patterns 

share a long subsequence of visits at cells and have a high similarity.  

In order to overcome the shortcoming of LCSS, [13] proposed a new definition of measure 

for patterns similarity Common Visit Time Interval (CVTI) between two trajectory patterns a 

and b. CVTI implies the sum of time interval that a and b stay at the same cells: 
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Thus, their approach focuses on similarity measure with the time interval which is different 

from the timestamp as in our work. 

Finally, one of the most suitable methods for our purpose is defined by G´omez-Alonso et. 

al. [14]. Their main purpose is to measure a similarity of sequences of events representing the 

behavior of the user in a particular context such as sequences of web pages visited by a certain 

user or the personal daily schedule. This measure is based on the comparison of the common 

elements (i.e. events such as web pages, places, etc.) in two sequences and the positions where 
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they appear. The former computes if the two individuals have done the same things, e.g if they 

have visited the same web pages or have gone to the same places. The later takes into account 

the temporal sequence of the events, e.g., if two tourists have visited the place A after going to 

the place B or not.  

For example, let T1 and T2 be tourists who have visited some places of the same city: T1={a, 

b, c} and T2={c, a, b, d}. There are 3 common places and also they have visited a before b. So 

they are quite similar. In order to take into account these two issues, the new measure called 

Ordering-based Sequence Similarity (OSS) consists, on one hand, of finding the common 

elements in the two sequences, and on the other hand, in comparing the positions of the 

elements in both sequences. Let i and j be two sequences of items of different lengths, i = (xi,1, 

…, xi,card(i)) and j =(xj,1, …, xj,card(j)). Let L = {l1, …, ln} be a set of n symbols to represent all the 

possible elements of those sequences (L is called a language). Then, the OSS is defined as: 
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The measure OSS has two parts, g is counting the number of non common elements, and f 

measures the similarity in the position of the elements in the sequences (the ordering). If two 

sequences are equal, the result of dOSS is zero, because the positions are always equal (f = 0) and 

there are not uncommon elements (g = 0). Conversely, if the two sequences do not share any 

element, then g = card(i) + card(j) and f = 0, and dOSS is equal to 1 when it is divided by card(i) 

+ card(j). The values of dOSS are always between 0 and 1.  

However, the ordering between the common elements in the two patterns may be no longer 

useful for our purpose. For example, let S1 and S2 be two trajectory patterns: S1={(1, t1), (0, t3), 

(5, t4), (6, t6), (7, t9)} and S2={(0, t3), (5, t4), (7, t9)}. Cells 0, 5 and 7 are common in both 

patterns S1 and S2.  Since these two patterns pass through the same cells at the same times, they 

must be considered temporal similar, even though they are not similar in OSS measure due to 

f(S1, S2) = 0.8 > 0. This computing result is obtained as follows: S1(0) = {1} and S2(0) = {0}, so 

f(0)(S1, S2) = |1-0| = 1. Similarly, f(5)(S1, S2) = |2-1| = 1 and f(7)(S1, S2) = |4-2| = 2.  
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The problem arisen in the measure given by G´omez-Alonso et. al. [14] is a motivation for 

considering its extension and that is the purpose of this paper. The next section is devoted to a 

brief description of our model of mobility patterns [2] [15] that is the basis for our proposed 

similarity measure. 

3. MOBILITY MODEL IN WIRELESS NETWORKS 

In this paper, it is assumed that the radio coverage region is represented by a hexagonal 

shaped network (see Figure 2). Each hexagon is a cell which is served by a Base Station (BS) in 

the communication space. The mobile nodes can travel around the coverage region. The 

bidirected graph is utilized to illustrate the mobility model of nodes in wireless network. 

Suppose that G = (V, E) is an unweighted directed graph, where V is the set of cells in the 

coverage region and the set E of edges represents the adjacence between pairs of cells. If two 
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cells, say A and B, are neighboring cells in the coverage region then G has a directed and 

unweighted edge from A to B and also from B to A. These bidirected edges illustrate the fact that 

a mobile node may move from A to B or B to A directly and further may travel around the 

coverage region corresponding graph G. The example network shown in Figure 2 can be 

modeled by the vertex-set V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and the edge-set E = {(0, 1), (0, 

2), (1, 0), (1, 2), (1, 9), (2, 0), (2, 1), (2, 3), (2, 8), (2, 9), ..., (11, 6), (11, 7), (11, 10)}. 

 

Figure 2.  An example coverage region (a) and the corresponding bidirected graph G (b) 

3.1. Representing Mobility Profiles with Spatiotemporal 

Behaviors of mobile users can be characterized in many different ways. In this work, two 

characteristics which are used to define mobility behaviors are related to location and time-of-

day. The following is some discussion of the motivation for using these characteristics. 

The location factor indicates that the movement of mobile users often follows a sequence of 

locations every day. For example, in a campus network, lecturers often move to classrooms, 

laboratories, library, etc whereas departmental staffs often travel around the administrative 

offices. Therefore, it is possible to predict the next location of a mobile user based on his own 

location history. 

Table 1.  Predefined timestamps 

Timestamps Time Interval Timestamps Time Interval 

t1 0:00 - 2:14 t7 13:00 - 15:44 
t2 2:15 - 4:29 t8 15:45 - 17:59 

t3 4:30 - 6:44 t9 18:00 - 20:14 
t4 6:45 - 8:59 t10 20:15 - 22:29 
t5 9:00 - 11:14 t11 22:30 - 23:59 
t6 11:15 - 13:29   

The time-of-day factor identifies the importance of the time when a mobile user moves to a 

location. The mobility behaviours changes as a function of time. In this work, we analyze the 

individual mobility patterns of lecturers in a campus wireless network. For example, the 

movement of lecturers depends on the schedule of classes. It means that he will move to the 

classrooms at the times according to his own teaching schedule. Therefore, it is possible to set 

the time interval every three teaching periods. A teaching period is 45 minutes so the time 

interval is 135 minutes. In our work, the predefined timestamps are illustrated in Table 1. 

3.1. Formalizing Mobility Patterns in Wireless Network 

This subsection presents the formalization for modeling mobility patterns. As discussed 

earlier, the mobile node can travel around the coverage region corresponding to a graph G. Let c 

be the ID number of the cell to which the mobile node connected at the timestamp t, a point is 

defined as follows. 
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Definition 1. Let C and T be two sets of ID cells and timestamps, respectively. The ordered 

pairs p = (c, t), in which c ∈ C and t ∈ T, is called a point. Denote P to be  the set of all points 

P = C × T = {(c, t) | c ∈ C and  t ∈ T}. 

Two point pi = (ci, ti) and pj = (cj, tj) are said to be equivalent if and only if ci = cj and ti = tj. 

Point pi = (ci, ti) is defined to be earlier than point pj = (cj, tj) if and only if ti < tj, and it is 

denoted as (ci, ti) < (cj, tj) or pi < pj. 

Definition 2. The trajectory of the mobile node is defined as a finite sequence of points <p1, 

p2,…, pk> in C × T  space, where pj = (cj, tj) are  points  for 1 ≤  j ≤ k. A sequence composed of 

k elements is denoted as a k-pattern. 

Note that the value of each timestamp tj is not unique in a trajectory, i.e. tj may be equal to ti 

iff they are timestamps of two consecutive points of a trajectory. For example <(c1, t1), (c2, t2), 

(c3, t2), (c4, t4)> is a trajectory. The ascending order of points of trajectory is sorted by using t as 

the key. 

Definition 3. A mobility pattern B = <b1, b2, …, bm> is a sub-pattern of another mobility 

pattern A = <a1, a2, …, an>, where ai and bj are points, written as B  ⊂ A, if and only if there 

exists integers 1 ≤  i1 < … < im ≤ n such that bk = aik, for all k, where 1 ≤ k ≤ m. And then, A is 

called the super-pattern of B. 

For example, given A = <(c4, t2), (c5, t3), (c6, t4), (c8, t5)> and B = <(c5, t3), (c8, t5)>. Then B  

is a sub-pattern of A  and conversely, A is super-pattern of B. 

4. A NEW SIMILARITY MEASURE FOR MOBILITY PATTERNS 

Our new similarity measure is motivated by the following requirements. It should be based 

on the characteristics of wireless networks and may simultaneously reflect similarities of both 

space and time. Intuitively, two mobility patterns are considered more similar in space if they 

share more common cells; patterns passing through the same cells at the same times must be 

considered to be more similar in time than the case they stayed at the different times. In 

consequence, the similarity measure between two mobility patterns needs to be based on two 

factors: 

• The number of common cells in the two patterns; 

• The timestamps of the common cells. 

The former allows us to measure the spatial similarity between mobility patterns and the 

later takes into account the temporal similarity. This section firstly describes similarity measures 

of mobility patterns in time and space and then makes use of the weighted composition 

technique for combining two such measures. 

Definition 4. Let S be a set of mobility patterns. A similarity measure D: S ×  S → [0, 1] is a 

function from a pair of patterns to a real number between zero and one and satisfies the 

following conditions: 

(i) Reflexivity: for all P ∈ S D(P, P) = 0; 

(ii) Symmetry: for all P, T ∈ S D(P, T) = D(T, P). 

4.1. Spatial Similarity Measure 

In this subsection, we make use of the mobility pattern definition and ignoring the time 

parameter to represent spatial patterns. Suppose that given two mobility patterns Pa = <ca1, ca2, 

…, can> and Pb = <cb1, cb2, , …, cbm>, where cai ∈ V and cbj ∈ V, for all i, j.  

Spatial similarity measure can be defined in terms of spatial dissimilarity between two 

mobility patterns. The more uncommon cells there are in two patterns, the more spatially 

dissimilar they are. 
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Definition 5. Let f: S ×  S → R be a function representing the number of uncommon cells in two 

patterns Pa and Pb. Then, f is determined by the formula: 

{ }( ) { }( )abibibaiaiba PcccardPcccardPPf ∉+∉= ||),(  

If the two patterns are equal, there are no uncommon cells in these patterns. The result of 

f(Pa, Pa) is zero. Oppositely, if the two patterns do not share any cells, the result of f(Pa, Pb) is (n 

+ m) where n and m are the length of patterns Pa and Pb, respectively. 

A spatial similarity measure between two patterns is then defined as follows: 

Definition 6. The spatial similarity measure Dspace(Pa, Pb) between two patterns Pa and Pb with 

length n and m,  respectively, is defined as follows: 

mn
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Proposition 1. The function Dspace(Pa, Pb) is a similarity measure. 

Proof. It is clear that 

0 ≤ card({cai|cai ∉Pb}) ≤ n and 0 ≤ card({cbi|cbi ∉Pa}) ≤ m 

By summation:  

0 ≤ f(Pa, Pb) = card({cai|cai ∉Pb}) + card({cbi|cbi ∉Pa}) ≤ (n + m). 

Thus, 1
),(

),(0 ≤
+

=≤
mn

PPf
PPD ba
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It is easy to check the reflexivity. When Pa = Pb, the result of Dspace(Pa, Pb) is zero due to  f(Pa, 

Pb) = 0. Additionally, if the two patterns do not share any cell, then f(Pa, Pb) = (n + m) and 

Dspace(Pa, Pb) is equal to 1 when it is divided by (n + m). 

The symmetric property is proven as follows. We have: 
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then f(Pa, Pb) = f(Pb, Pa) 

In addition, we have also: 
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Due to f(Pa, Pb) = f(Pb, Pa), Dspace(Pa, Pb) is equal to Dspace(Pb, Pa). Thus, symmetry property 

has been proven. The proposition is proved. 

Determining the spatial similarity between two patterns is presented in Algorithm 1. First of 

all, counting the number of cells in one pattern but not in another (Step 1-2) using Algorithm 2, 

then calculating the length of patterns (Step 3-4). Applying the formulas in Definition 5 and 

Definition 6 to calculate the values of function f and Dspace respectively (Step 5-6).  

Algorithm 1 Spatial Similarity 

Input:  two patterns Pa and Pb 

Output: the spatial similarity between Pa and Pb, Dspace(Pa, Pb) 

1. g1 ← card(Pa, Pb) 

2. g2 ← card(Pb,Pa) 

3. n  ← length(Pa) 

4. m  ← length(Pb) 

5. f(Pa, Pb)  ← g1 + g2 

6. Dspace  ← f / (n + m) 

7. return Dspace 
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4.2. Temporal Similarity Measure 

In reality, the mobility behaviors of mobile objects typically change as a function of time. It 

means that the temporal property of mobility patterns identifies the importance of the time when 

the mobile object moves from a location to the other one [2]. Therefore, it is necessary to define 

temporal similarity measure by means of the temporal dissimilarity between two mobility 

patterns. Our approach is based on intuition that two patterns must be considered temporally 

similar when they pass through the same cells at the same time.  

For example, let S1 = {(1, t1), (0, t3), (5, t4), (6, t6), (7, t9)} and S2 = {(0, t3), (5, t4), (7, t9)} be 

two mobility patterns. In this context, there are 3 common cells 0, 5 and 7, and they have passed 

through cell 0 at  t3, cell 5 at t4 and cell 7 at t9. Therefore, two these patterns are considered 

temporally similar. In order to determine the temporal dissimilarity between patterns, we need 

to calculate the total of temporal difference between the timestamps of the common cells in two 

patterns. The smaller the total time difference is, the more temporally similar the two patterns 

are. In the following, we will formalize these statements. 

Suppose that T is the set of predefined timestamps. Let Pa = <(ca1, ta1), (ca2, ta2), …, (can, tan)> 

and Pb = <(cb1, tb1), (cb2, tb2), …, (cbm, tbm)> be two mobility patterns, where for all i, j cai, cbi ∈ V 

and taj, tbj∈ T. The temporal similarity measure between patterns is defined as follows: 

Definition 7. The temporal similarity measure Dtime(Pa, Pb) between two patterns Pa and Pb with 

length n and m, respectively, is given by 
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where k is the number of common cells of Pa and Pb. 

Proposition 2. The function Dtime(Pa, Pb) is the similarity measure.   

Algorithm 2 Uncommon Cells Counting Algorithm 

Input:  two patterns Pa and Pb 

Output: number of cells in Pa but not in Pb, card(Pa, Pb) 

1. card = 0 

2. n  ← length(Pa) 

3. m  ← length(Pb) 

4. for all cells ci ∈ Pa do 

5. j = 1 

6. repeat 

7. cj ← Pb.c[j] 

8. if ci = cj then 

9. break 

10. else 

11. j = j + 1 

12. end if 

13. until j = m 
14. if j = m then 
15. card = card + 1 

16. end if 
17. end for 
18. return card 
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Proof. Clearly, Dtime ≥ 0. We will prove that Dtime ≤ 1. Since |tai - tbj| ≤ max(tai, tbj) for all tai, tbj ∈ 

T,, Ttt
tt

tt
bjai

bjai

bjai
∈∀≤

−
, 1

),max(
. According to Definition 7, we just compute the time difference 

between two timestamps tai and tbj of common cell (cai = cbj). Let k be the number of common 

cells of Pa and Pb, then 
( )

k
tt
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Clearly, when two patterns Pa and Pb pass through the same cells at the same timestamps, 

Dtime(Pa, Pb) = 0, due to  |tai - tbj|= 0. In the case that either Pa or Pb passes through all cells at 

timestamp t0, then 
1

),max(
=

−

bjai

bjai

tt

tt  and consequently Dtime(Pa, Pb) = 1. 

The Symmetry is proven as follows. We have: 
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In addition, we have also: 
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then 

Dspace(Pa, Pb) = Dspace(Pb, Pa) 

Thus, symmetric property  has been proven. The proposition is proved. 

Determining the temporal similarity between two patterns is presented in Algorithm 3. First 

of all, determining and counting the number of the common cells in both patterns (Step 4-8), 

then calculating the total of temporal difference between the timestamps of each common cell in 

two patterns (Step 9-16). Applying the formulas in Definition 7 to calculate the value of Dtime 

(Step 22). 

4.3. Composition Similarity Measure 

A similarity measure in cellular space of wireless network may be constructed from the 

temporal and spatial similarities. It is a convex or weighted combination of two similarity 

measures on space and time that have been presented in the previous subsections. 

Definition 8. Let Wspace and Wtime be the weighted values of spatial and temporal similarity 

measures respectively, such that Wspace + Wtime = 1. The composition similarity measure is 

defined as follows 

( ) ( ) ( )batimetimebaspacespaceba PPDWPPDWPPD ,.,., +=  

It is easy to prove the following proposition. 

 

Proposition 3. The function D(Pa, Pb) is the similarity measure. 

5. A CASE STUDY 

The definition of similarity may depend on the type of resemblances among objects. The 

different similarity measures may reflect the different aspects of data and of their context. Two 
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patterns can be seen very similar in one measure but rather different in the other measure. In 

order to demonstrate this observation, we perform a computation of the similarity between two 

trajectory patterns Sa = {(1, t1), (0, t3), (2, t4), (8, t6), (7, t9)} and Sb = {(0, t3), (2, t4), (3, t5), (8, t6) 

, (4, t8)} using different similarity measures. The following analysis will use the directed graph 

G in Figure 2 and the set of predefined timestamps in Table 1 as an example to explain the idea 

of different similarity measures. 

 

Firstly, we determine the similarity between two patterns Sa and Sb using the measure  

proposed in [12]. We have: 

 

DG = max{c(vi, vj), for all vi, vj ∈V(G)} = 4. 

∑
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Similarly, d(0,2)= 0.25, d(2,3)= 0.25, d(8,8)= 0, d(7,4)= 0.25. 

Thus  2.0
5

25.0025.025.025.0
),( =

++++
=banet SSD  

We also have: 

Algorithm 3 Temporal Similarity 

Input:  two patterns Pa and Pb 

Output: the temporal similarity between Pa and Pb, Dtime(Pa, Pb) 

19. i = 1 
20. k = 0 
21. total = 0 
22. repeat 
23. j = 1 
24. repeat 
25. if Pa.c[i] = Pb.c[j] then 

26. k = k + 1 

27. if Pa.t[i] > Pb.t[j] then 

28. difference = Pa.t[i] - Pb.t[j] 

29. max = Pa.t[i] 

30. else 

31. difference = Pb.t[j] – Pa.t[i] 

32. max = Pb.t[j] 

33. end if 

34. total = total + (difference / max) 

35. end if 

36. j = j + 1 

37. until j = m 
38. i = i + 1 
39. until i = n 
40. Dtime = total / k 
41. return Dtime 
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Taking Wnet = 0.5 and Wtime = 0.5, we have 

 

),(.),(.),( batimetimebanetnetbatotal SSDWSSDWSSD +=  

267.0333.05.02.05.0),( =×+×=batotal SSD  

 

Secondly, we use the method OSS in [14] to measure the similarity between the two patterns. 
We have: 
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Notice that Sa and Sb have 3 common cells 0, 2 and 8 

Sa(0) = {1} and Sb(0) = {0}, so f(0)(Sa, Sb) = |1-0| = 1  

Similarly, f(2)(Sa, Sb) = |2-1| = 1 and f(8)(Sa, Sb) = |3-3| = 0. 

So 4.0
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Finally, we compute the similarity between the two patterns based on our measure. We have 
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Taking Wspace = 0.5 and Wtime = 0.5, we get the result 

),(.),(.),( batimetimebaspacespacebatotal SSDWSSDWSSD +=  

( ) 2.005.04.05.0, =×+×=batotal SSD  

6. DISCUSSIONS  

As presented in Section 2, there are various approaches in computing the similarity between 

sequences in trajectory data of moving objects. Most of them have focused on Euclidean space 

or not fully exploited the spatial and temporal properties of mobility patterns. For that reason, 
they are not appropriate for measuring similarity of spatio-temporal patterns in wireless 
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network. This section is devoted to an additional comparable discussion between our similarity 
measure and some closely related approaches.  

First, the work in [12] used the network distance instead of the Euclidean distance. This 

method considered simultaneously spatial and temporal aspects. However, geographically close 
trajectories may not necessarily be similar since the activities implied by nearby landmarks they 

pass through may be different. In wireless networks, the more common cells two trajectory 

patterns share, the more similar they must be considered. 

Second, Kang et. al. [13] proposed measure LCSSa,b(n, m) based on cellular space instead of 

Euclidean space. Since LCSSa,b(n, m) is given in recursive form, it may result in large   

computational complexity. Moreover, the similarity measure CVTI [13] is concerned with time 

interval, our one is based on the model of timestamp in wireless network. 

Finally, the method that is most closely related to our approach has been given by C. Gomez-

Alonso et al. [14]. Their approach computes the spatial similarity measure for sequences of 
events based on the number of common elements in these sequences. However, the temporal 

aspect in their approach is the ordering between the common elements in two sequences, rather 

than the timestamp as in our model.  

In general, our proposed similarity measure differs from the existing measures in two 

aspects. First, due to the properties of wireless networks, the spatial similarity measure is based 

on the number of common elements in two patterns. It means that two trajectory patterns must 
be considered more similar when they share more common cells. Second, our temporal 

similarity measure takes into account the context whether two patterns passing through the same 

cells at the same times or not. Intuitively, two patterns passing through the same cells at the 

same times must be considered more temporal similar than the case they stayed at the different 

times. Our research results on spatiotemporal similarity measure in this work will be utilized to 

develop an improvement of k-means algorithm [16] [17] [18] for clustering mobility patterns. 

 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a similarity measure for spatiotemporal mobility patterns of 
wireless network. We have also presented the model of user’s mobility patterns in wireless 

network developed by ourselves based on which the similarity measure has been constructed. 

Our measure was concerned with characteristics on both time and space of mobility patterns 
represented in this model. We have mathematically defined two temporal and spatial similarity 

measures and then made use of a weighted combination to integrate these partial similarity 

measures. The truth of this formulation has been proved in mathematics. We have also 
described a case study for comparing our proposed measure with the other ones. In our future 

work, we are going to develop a clustering algorithm of mobility patterns based on this 

similarity measure and to utilize this algorithm to construct a system for supporting prediction 

of mobile users.  
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