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ABSTRACT 

Transmission of video over a limited bandwidth network is challenging due to the natural variability of 

video, and link characteristics. Video smoothing techniques can be used to facilitate more effective 

transmission and to preserve better quality. In this paper we develop a semi-optimal video smoothing 

approach to manage the transmission of MPEG-4 and H.264 video while mapping it to be more suitable 

for a QoS based network. The proposed technique utilizes a smoothing buffer with pre-defined thresholds 

to smooth the transmission rates while assuming minimal information about the video to be transmitted. 

The results obtained showed a significant improvements in transmission rate variability while 

guaranteeing no buffer overflows or underflows. In addition, a queuing model is developed for the used 

smoothing algorithm for H.264 video streams with optimized encoding and packetization, utilizing the 

available H.264 macroblock ordering option.  
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1. INTRODUCTION 

Subscriptions to broadband services are expected to reach 1.8 billion by 2012. High data rates, 

improved performance and user experience will be the trend driving the development of fixed 

and mobile broadband technologies for applications such as IP interactive TV, video, gaming, 

e-health and others [1, 2]. These applications have different QoS requirements to satisfy the 

intended users’ expectations and therefore QoS-enabled networks play a crucial role in the 

successful deployment of such applications. The main objective of a QoS-enabled network 

infrastructure is to ensure that the users get the desired experience they expect based on their 

service level agreement with the operator that owns and manages the network. On the other 

hand, from the operator point of view, applying QoS implies that it can optimize usage of 
limited network resources while satisfying customers. Among the above mentioned 

applications, video is considered to be the most challenging.  

When a video stream is encoded as variable bit rate (VBR), bit allocation and distribution is 

varied depending on the complexity and motion of each scene. This is done to obtain an 

optimal video quality while not consuming more resources than needed. The video variability is 

very hard to measure and depends on the chosen encoding parameters of the video clip, mainly 

the mean encoding bit rate (CER) and the peak encoding bit rate (PER). The greater is the 

difference between these two parameters, the greater is the assumed variability in the video 

stream which results in great frame size variability. To alleviate this variability for the 

transmission of video over limited bandwidth network connections, and for better provisioning 
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of network resources certain measures are needed. To achieve this, traffic classifiers and 

conditioners, also called traffic shapers or smoothers have been proposed by researches before 

[3, 4, 5].  Where traffic classifiers can be used to prioritize traffic types, the main concept 

applied by traffic shapers is to use one or more shaping buffers managed by particular 

algorithms at different places between the sender and the receiver to control and adapt the rate 
at which the traffic is being sent, and therefore help comply with the conditions of the network 

connections/channels used or reserved. Figure 1 shows a network diagram of how video can be 

transported over a wired/wireless network where the smoothing of video can be done at the 

source or just before the air interface i.e. NodeB in the case of a WiMAX or LTE wireless 

network.  

The rest of the paper is organized as follow. In section two related work is presented and in 

section three the proposed video smoothing technique is discussed. Section four presents a 

system model and section five shows and discusses the obtained performance results. In section 

six a queuing model for H.264 video is presented and the paper is then concluded in section 

seven.  

 
Figure 1. Video Transmission over a network 

2. RELATED WORK 

Two main extreme techniques of video smoothing have been mainly used in the literature: 

basic smoothing and optimal smoothing [6, 7]. In basic smoothing, video is transmitted at the 
average rate of N none overlapping successive frames. In this technique, the larger is N the less 

variability there is, but the larger is the smoothing delay.  In optimal smoothing which has a 

greater complexity, the transmitting bit rate is minimized while guaranteeing an upper bound 

on delay and no over/under flows of the decoder buffer. This is achieved by using piecewise 

constant bit rate segments which are as long as possible. Optimal smoothing is only suitable for 

pre-encoded video since it computes the transmission rate schedule off line.  In both schemes 

the transmission rate is changed for every frame which is not appropriate for all kind of 
communication networks. For transporting pre-stored video over unmanaged IP networks, the 

authors in [8] proposed a rate control technique based on modern control theory to optimize the 

user-perceived video which was measured using an evaluation function. The technique was 

mainly based on controlling both the sending rate and video rate to achieve optimized results. 

In another paper [9], the authors focused on the performance evaluation of MPEG-4 video 

transmission based on their own proposed single-rate multicast transport protocol for 

multimedia applications. The authors primarily focused on a detailed evaluation which was 

based on both network-centric and video quality metrics and concluded that moderate and 

stable transmission rates of video with minimum losses provided a better service to the end user 

in terms of video quality. To smooth out the video play-out for better quality viewing when 

transmitted over a wireless channel and to improve the overall system performance, the authors 

in [10] proposed a new adaptive media play-out (AMP) system based on a packet-delay 

prediction algorithm which makes decisions based on the delay interdependency of the adjacent 
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packets. Most recently, the authors in [11] presented a theoretical window based model to 

achieve a tradeoff between buffer occupancy and picture quality.  This was gracefully achieved 

by regulating the size of the window composed of several adjacent frames.   

Although scheduling, admission control and proper resource allocation are not within the scope 

of this paper, however it plays a vital role in QoS networks, especially emerging wireless 

networks as was discussed by other researchers.  Several researchers have worked on call 
admission, scheduling and reservation protocols for the various types of networks. For example, 

the authors in [12] presented an optimization-based formulation for scheduling and resource 

allocation in the uplink OFDM access network which can also be applied to an LTE network.  

In another paper the authors in [13]  were able to show how proper scheduling and resource 

reservation can be used for pre-encoded video stream over wireless downlink packet networks 

while incorporating information obtained from the video decoder for the optimization of 

resource allocation and the preservation of video quality. In [14] the authors presented an 

adaptive and fair priority scheduler for video streaming over wireless links where they 

considered the characteristics and strict requirements of multimedia applications being 

transmitted. Furthermore, the authors in [15] proposed and evaluated two scheduling algorithms 

tailored toward OFDM based broadband wireless systems. In [16] the authors combined 

admission control and scheduling based on QoS differentiation of a mixed traffic scenario in an 

LTE uplink. For multimedia traffic, the authors in [17] proposed a new Data Link Layer 

protocol which grants a source permission to transmit over a wireless channel based on a 

priority scheme that takes into account the time-to-live parameter of all the transactions, 

selectable priorities assigned to all the sources and the relevant channel condition. 

3. PROPOSED VIDEO SMOOTHING 

In this paper a semi-optimal smoothing technique that can be used for both pre-encoded and 

real-time video is proposed. The technique uses two buffer thresholds to manage the 

transmission rate (R) while guaranteeing no buffer over/under flow and a desired start-up delay. 

This model can be interpreted using a three state Markov chain process with transition being 

possible only between adjacent states (R1, CER_t, R2) as shown in Figure 2.  Where R1 is a 

transmission bit rate less than the mean transmission bit rate (CER_t) and R2 is a transmission 

bit rate greater than CER_t, but less or equal to PER. One of the proposed scheme objectives is 

to minimize the transmission at R2 and to transmit at CER_t or R1 whenever possible. This is 

to a align R= CER_t with the use of a constant bit rate (CBR)  when going over an network 

where data rates can be guaranteed up to a pre-chosen rate = CBR.  When R is anticipated to be 

greater or less than CBR, a new rate matching R will be negotiated between the edge network 

node and the client to guarantee conformance with the agreed upon service level agreement. 
This could be based on a traffic contract that can be agreed upon between the ISP and the client 

to allow the transmission at a rate above the CBR when needed with proper billing to account 

for the client receiving information below or above R. The contract can have provisioning for 

credit being given when R < CBR and dept when R > CBR. Once the transmission is finished 

or stopped, a billing statement based on the agreed upon traffic contract can be generated to 

account for any additional dept or credit.  In the proposed smoothing scheme, CER_t can be 

chosen initially based on the CER value and can be expressed as: CER_t = CER (1+α) bps, 

where α is a video variability factor greater or equal to zero and can be chosen initially by the 
user for real-time transmissions or through video analysis for pre-encoded streams. From our 

simulation of pre-encoded video a value between 0.01 and 0.03 was needed to compensate for 

the difference between the gained credit and owed dept by the end of the transmission when 

smoothing is used. Another way to choose α would be based on the maximum allowed 

smoothing buffer delay.  
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4. SYSTEM MODEL 

The performance of the proposed video smoothing approach was evaluated using 

program written in Java. The simulation program is based on a client/server paradigm. At the 

server, the video frames are generated every 33 ms

FIFO synchronized queue serving as a smoothing buffer
based on R utilizing an RTP frame length of 30 ms

a sink.  Several MPEG-4 and H.264 video traces were used in the simulation. These video 

traces and their statistics were obta

video traces were chosen to represent vario

MPEG-4 and H.264 traces used 

ratio (PSNR) so that a better and fair 

frames per second VBR CIF 352x288 with 
IBBBPBBBPBBBPBBBP [18, 19, 20

Table 2.

Video Trace Mean Frame

Rate (bps) 

H.264-Tokyo 

Olympics 

144267.6 

MPEG4- 

Tokyo 
Olympics 

278896.9 

H.264- Silence 

of the Lambs 

68898.9 

MPEG4- 

Silence of the 

Lambs 

194176.9 

H.264- NBC 12 

News 

197427.6 

MPEG4- NBC 

12 News 

420051.4 

In the proposed scheme minimal information about the video traces was assumed to be known 

for applying smoothing, making it suitable for both pre

of the smoothing scheme algorithm

buffer occupancy threshold chosen 

that the maximum amount to be transmitted is no more than the current 

(B). A2 is the second buffer occupancy threshold 

desired value, to maximize the transmission rate at the CER

the PER, to avoid any buffer overflow and to keep the maximum buffering delay 

below a certain desired limit. D in this 

D= [(A2/CER_t * 8) + Tf] or D= Tf * [(PER/CER_t) + 1]
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Figure 2. Transmission rate states 

The performance of the proposed video smoothing approach was evaluated using a simulation 

program written in Java. The simulation program is based on a client/server paradigm. At the 

server, the video frames are generated every 33 ms, i.e. every frame period (Tf), and

serving as a smoothing buffer. Data is then read from th
RTP frame length of 30 ms for transmission to the client which acted as 

4 and H.264 video traces were used in the simulation. These video 

tatistics were obtained from [18, 19, 20] and summarized in Table 2. 

video traces were chosen to represent various video types (sport, movie, news). Corresponding 

4 and H.264 traces used were best chosen for similar mean frame peak signal to noise 

and fair comparison can be made. All traces were encoded as 

VBR CIF 352x288 with a group of picture (GOP) defined as 
[18, 19, 20].  

Table 2. Video traces used in this work 

Mean Frame Bit Peak Frame Bit 

Rate (bps) 

Number of 

Frames 

Mean Frame 

PSNR (db)

4182960 133125 35.557

3358080 133125 34.829

3168720 53997 37.598

2592480 53953 37.116

3393840 49521 33.131

4248240 49521 33.375

scheme minimal information about the video traces was assumed to be known 

for applying smoothing, making it suitable for both pre-encoded and real-time video. 

smoothing scheme algorithm are outlined in Figure 3. A1 in the algorithm is 

chosen to avoid any buffer underflow as R is chosen to guarantee 

that the maximum amount to be transmitted is no more than the current content of the buffer 

the second buffer occupancy threshold chosen to keep the startup delay down to 

, to maximize the transmission rate at the CER_t, to minimize the transmission at 

the PER, to avoid any buffer overflow and to keep the maximum buffering delay (D 

in this case can be expressed by: 

D= Tf * [(PER/CER_t) + 1] 
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program written in Java. The simulation program is based on a client/server paradigm. At the 

and saved at a 

then read from the queue 
for transmission to the client which acted as 

4 and H.264 video traces were used in the simulation. These video 

and summarized in Table 2. The 

). Corresponding 

similar mean frame peak signal to noise 

All traces were encoded as 30 

 G16B3 i.e. 

Mean Frame 

PSNR (db) 

35.557 

34.829 
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37.116 

33.131 
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in the algorithm is the first 

is chosen to guarantee 

content of the buffer 

e startup delay down to a 

, to minimize the transmission at 
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By limiting the maximum smoothing buffer delay to D, one can calculate the expected CER_t 

and therefore the needed value of α based on CER_t = CER (1+α) as was indicated earlier. 

The proposed algorithm is considered to be semi-optimal for two reasons: 1) the maximum 
buffering delay is not linked to the playback time of the video frames as more smoothing can be 

done at the receiving end to overcome that. 2) the instantaneous amount of net credit/dept 

might not be zero i.e. the number of transmitted bytes at any instant of time is not conformant 

to the agreed upon average transmission rate. However, this should have been agreed upon 

before the start of any transmission and a final billing statement can be produced once the 

transmission is over to make for any needed adjustments. On the other hand, and for a risk of 

introducing additional delay i.e. larger maximum buffer fullness, step 3c in Figure 3 can be 
modified to guarantee that R will not be above the agreed upon CER_t unless there is available 

net credit. In this case R will be tied to the number of bytes available as credit and step 3c will 

be modified as in Figure 4. In the next section, results are obtained to investigate the 

performance of the proposed algorithm. 

 

1. Choose two thresholds (A1 and A2) where  

A1= (CER_t /8)* Tf; 

A2= (PER /8) * Tf; 

2. Pre-fill the buffer with video data until A1 before starting to transmit any data over the 

network 

3. Choose a transmission rate, R, based on the buffer fullness (B) in bytes as follow: 

a) If {B < A1}, then  

R = (B / Tf)*8 bps; 

Credit = Credit + [(CER_t – R)/8] bytes; 

b) Else If {A1<= B <= A2} then 

R = CER_t bps; 

c) Else (i.e. B > A2), then 

R = Max. [CER_t, (Min. (PER, ((B-A2)/ Tf) * 8) bps]; 

Dept = Dept + [(R – CER_t)/8] bytes; 

4. Read a video frame into the buffer every Tf 

5. Transmit an RTP frame every RTP frame period 

6. Go back to 3 and repeat until there are no video frames left to transmit.  

7. When done, generate a final billing statement. This will be based on the agreed upon mean 

transmission rate and any difference between the gained credit and owed dept from step 3.  

Figure 3. The proposed smoothing algorithm 

If (Credit – Dept) > 0 { 

R = Max. [CER_t, (Min. (PER, ((Credit-Dept)/Tf)*8) bps];  

Dept = Dept + [(R – CER_t)/8] bytes; 

Credit = Credit – [(R – CER_t)/8] bytes; 

} 

Else {R = CER_t}; 

Figure 4. R based on the availability of credit 
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5. RESULTS AND ANALYSIS  

To look at the performance of the proposed algorithm, several experiments were conducted. 

Table 3 shows the general performance results when CER_t was set to be CER. As can be seen 

from Table 3, when the smoothing technique is applied the value of R is roughly 50% of the 

time around the CER_t except for the H.264 NBC 12 News which is 67%. Adding up the 

percentages of time when R is either at R1 or CER reflects the percentage of time where 

transmission is <= CBR in a limited bandwidth network.  The results also reveal that a CER_t 

greater than the CER is needed to minimize the (Dept – Credit) value for optimal overall 
transmission based on a traffic contract.   

In Table 4, we looked at the effect of changing the value of A1. As can be seen from the results 

of Table 4, increasing the value of A1 had no significant impact on the performance except for 

an additional start up delay since the smoothing buffer need to be pre-filled to the first buffer 

threshold before transmission.  In Table 5, we looked at the effect of choosing a CER_t greater 

than CER. This is to show how choosing a value of α will affect the performance. The value of 

α here was chosen assuming that a pre-analysis phase was done which resulted in the 

calculation of that value. The value used was based on the ratio (CER_t Obtained / CER) from 

Table 3. Where CER_t Obtained refers to the average transmission rate obtained from the 

analysis phase. The main objective is to reduce the value of the (Dept – Credit) bytes per 

second as can be seen from Table 5 to better conform to the agreed upon traffic contract. 

Table 3. Performance results for transmitting video traces 

Video Trace (Dept – Credit) 

bytes per second 

Percentage at 

R1, CER, R2 

Maximum  

B in bytes 

CER_t Obtained 

/CER 

H.264-Tokyo 

Olympics 

198.2 34.4, 52.6, 

13.0 

34514 1.0116 

MPEG4- Tokyo 

Olympics 

406.9 29.0, 48.9, 

22.1 

28142 1.0116 

H.264- Silence of 

the Lambs 

124.7 34.2, 52.7, 

13.1 

24986 1.0149 

MPEG4- Silence of 

the Lambs 

166.7 29.2, 50.9, 

19.9 

20910 1.010 

H.264- NBC 12 

News 

285.8 23.5, 67.0, 9.5 26461 1.0118 

MPEG4- NBC 12 

News 

524.3 28.3 ,53.8, 

17.9 

32784 1.010 

Table 4. H.264- Silence of the Lambs transmitted at R = CER for different pre-fill buffer values 

Pre-Fill 

Value in 

bytes 

(Dept – 

Credit) bytes 

per second 

Percentage at R1, 

CER, R2 

Maximum  

B in bytes 

Obtained CER_t 

A1 124.7 34.3, 57.8, 7.9 24986 1.0149*CER 

50 A1 121.4 34.3, 57.9, 7.8 24998 1.0145*CER 

Table 5. Using obtained CER_t instead of CER 

R (Dept – Credit) 

bytes per sec 

Percentage at 

R1, CER, R2 

Video Trace 

CER 124.7 34.3, 57.8, 7.9 H.264- Silence 

of the Lambs 1.0149 * CER - (35.4) 35.3 ,57.0, 7.7 

CER 166.7 29.2, 50.9, 19.9 MPEG4- Silence 

of the Lambs 1.010* CER 59.5 29.4, 51.1, 19.6 
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To look at the effect of smoothing on the rate variability we used the variability definition from 

(G. Van et.al 2008) given by:  

V = Standard Deviation of Transmission Rates / Mean Transmission Rate.  

Figure 5 shows the results on variability for six video traces when transmitted using the 

proposed smoothing technique and without any smoothing applied i.e. each video frame is 

being transmitted using a transmission rate calculated based on the frame size. As can be seen 
from Figure 5, improvement in rate variability is above 20% for all traces with more than 46% 

for the H.264 NBC 12 News clip.  This is mainly due to the fact that R is at R1 or CER the 

majority of the time. This can also be captured from Figure 6 which shows a sample of 100 

transmission rates for the H.264 Silence of the Lamb video trace.  

 
Figure 5. Effect of smoothing on the variability of transmission rate  

 

Figure 6. Effect of smoothing on transmission rates 
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Finally, we looked at the performance of the algorithm with step 3c in Figure 3 being replaced 

with the one in Figure 4. In this case, R was tied to the availability of credit when the buffer 

content was above A2. This case was run for the H.264 Silence of the Lamb clip and the results 

showed V = 2.4 and 172 buffer overflow instances indicating a poor performance. In the next 

subsection we look at the performance of the smoothing scheme when feedback on bandwidth 
is provided from the network for the connection over which the video is being transported.  

5.1 Smoothing with Network Connection Feedback 

The average/maximum combination of available bandwidth of a network video connection over 

the period of an RTP frame, 30 ms, as can be allocated by the scheduler at the edge node, i.e. 

NodeB in case of a cellular network such as LTE, is fed back to the smoothing buffer and used 

to regulate the transmission rate.  In this case R in the smoothing algorithm will not just depend 

on the fullness of the smoothing buffer, but will also depend on the available connection 

bandwidth parameters.  We assume that the average connection bandwidth (Rc) and the 

maximum available connection bandwidth (Rmax) do not change within the length of an RTP 

frame i.e. 30 ms.  For this mode, step 3 in the algorithm of Figure 3 is modified as shown in 

Figure 7. As an example, we have used data generated from the proposed LTE wireless channel 

model in [21] for a system bandwidth of 10 MHz. We assume that the scheduler at NodeB is to 

allocate an average wireless channel bandwidth based on the average bit rate of Physical 

Resource Blocks (PRBs) over a number of LTE physical layer transmission time intervals 

(TTIs), within an LTE frame of 10 ms. Based on this proposed model the generated average bit 

rate per PRB is shown in Figure 8. Rc and Rmax in this case are chosen to be as close as 

possible to the encoding parameters of the video clip being transmitted. For example, when 

transmitting the H.264 Silence of the Lambs clip which has a CER around 70 Kbps, Rc was 
based on the allocation one PRB every 4 TTIs within an LTE frame and Rmax was based on 

the allocation of 9 PRBs per TTI. Based on this, the average PRB bit rate generated, Rc, will be 

around 80 Kbps and the average maximum bit rate that can be allocated, Rmax, will be around 

2.9 Mbps.  The transmission rate variability results for the Silence of the Lambs H.264 are 

shown in Figure 9. As can be seen, the transmission rate variability was further reduced with 

channel feedback from 1.8 to 1.4 and no buffer over/under flows occurred.   

 

Figure 7. Step 3 of the smoothing algorithm with feedback 

 

Choose a transmission rate, R, based on the buffer 

fullness (B) in bytes and the average channel 

bandwidth as follow: 

a) If {B < A1}, then  

R = Min ((B / Tf)*8 bps), Rc); 

Credit = Credit + [(CER_t – R)/8] bytes; 

b) Else If {A1<= B <= A2} then 

R = Min (CER_t, Rc) bps; 

c) Else (i.e. B > A2), then 

R = Min {Max [CER_t, (Min. (PER, 

((B- A2)/ Tf) * 8) ], Rmax} bps; 

Debt = Debt + [(R – CER_t)/8] bytes; 
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Figure 8. Average PRB bit rate per TTI 

 

Figure 9. Variability results with and without channel feedback  

6. MODELING OF SMOOTHING H.264 VIDEO 

The H.264 video traces are considered in this paper to be encoded by taking the advantage of 

the flexible macroblock ordering (FMO) option [22], which allows macroblocks relevant to the 

same object within each video frame to be grouped together [23]. This feature is achieved by 

adding a new layer, called macroblock groups, in video frames.  With the FMO option, an 

H.264 video encoder is not any more restricted to raster scan order. Instead, the encoder first 

assigns macroblocks located in a video frame into macroblock groups and then it packetizes 

each macroblock group independently into a single packet. Hence, after encoding and 

packetizing, the number of packets contained in a video frame is a random variable, which 

H.264- Silence

0

0.5

1

1.5

2

2.5

3

V (Smoothed, With 

Channel Feedback)

V (Smoothed, No 

Channel Feedback)

V (No Smoothing)

V



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011 

157 

 

 

depends on the number of macroblock groups contained in each video frame. H.264 video 

traces are assumed to be generated and transmitted at a rate of 30 frames per second.  In the 

following analysis, we assume that each video frame consists of a maximum of N independent 
macroblock groups, where each macroblock group is modeled as an ON-OFF process that 

generates a packet when it is in the ON state.  As shown in Figure 10, the transition rate from 

ON state to OFF state is ρ and the transition rate from OFF state to ON state is β. When N of 

such ON-OFF packet streams are multiplexed, the resultant packet stream can be represented 

by an (N+1) state Markov modulated process as shown in Figure 11, where the state i 

represents that i ( i = 0, 1, 2, …, N) packets in a video frame. The transition rate from the state i 

to the state (i-1) is iβ and the transition rate from the state i to the state (i+1) is (N-i)ρ  

 

Figure 10. On-Off Traffic Model 

 

Figure 11. Multiplexing of ON-OFF Sources 

6.1 Performance Analysis of the Proposed Model 

As shown in Figure 12, the queuing model of a smoothing buffer has a buffering capacity of K 

packets with thresholds A1 and A2, which are used for service rate control. Let x be the number 

of packets in the queuing system. When 1Ax0 ≤≤ , the service rate is )1(CER t α− packets per 

second. Likewise, when 21 AxA <≤ , and KxA2 ≤≤ the service rates are tCER and 

)1(CER t α+  packets per second, respectively, where )10( ≤α≤ is a video variability factor 

and can be chosen initially by the user for real-time transmissions or through video analysis for 

pre-encoded streams.   
 

Figure 12. Management of transmission rates  
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The analysis here is based on a fluid flow model [24] since packets arrive at the input of the 

queuing system in bursts given by 
iN

ON
i
ON )p1(p

i

N −−







where i represents the number of ON-

OFF processes among the N  processes in the ON state and ONp represents the probability that 

an ON-OFF process is in the ON state. Hence, the classic solution based on a Markov chain 

model is not applicable. The following analysis is based on fluid flow technique given in [24] 

with the assumption that N>>1 and the output transmission link is divided into equal time slots 

and each slot is equivalent to the maximum transmission time of a packet such that the 

transmission time of RTP/IP packets is assumed to be uniformly distributed. This assumption is 

reasonable, because when N>>1, the bit rate allocated to each packet when compared to the 

large capacity of the broadband transmission link is negligible.  Therefore, variation of the 

transmission time from one packet to another is negligible.  Considering that the input stream 

consists of i ON-OFF processes that are in the ON state at time t, we define 

) 1,2} {0,m ,AxA N,i0  (  (t,x)F 1mmi ∈<≤≤≤ + , as the cumulative probability distribution 

for the packets in the queue at time t, where i out of N ON-OFF processes are in the ON state. 

In fact,  (t,x)Fi represents the probability that the queuing buffer occupancy is less than or 

equal to x for ) 1Ax0 ( <≤ , ) Ax A( 21 <≤ and ) KxA ( 2 <≤  while i processes are in the ON 

state at time t.  According to Figure 12, Fi (t, x) can be calculated by setting up a generating 

equation of Fi (t+∆t, x) which is the probability at an incremental time of t+∆t. Then, we have 

 

 

 

with the term t)Ci(x x ∆−λ−  being the buffer occupancy. On the right side of equation (1), the 

first term is the probability of transition from the state (i-1) to the state i at time t+∆t, the 

second term is the probability of transition from the state (i+1) to the state i and the third term is 

the probability that the system is at state I and is not changing at time t. The term o(∆t) 

represents all higher order terms which go to zero much rapidly than ∆t when ∆t  tends to zero. 

Hence, the effects of o(∆t) is negligible when ∆t is small enough. In equation (1), we also 

assume that F-1(t,x) and FN+1(t,x) are set to zero.   

Now we expand Fi(t+∆t,x) and Fi(t,x-∆x) for ∆x =( iλ-Cx )∆t  in their respective Taylor series 

with the assumption that the appropriate continuity conditions are satisfied. Let ∆t goes to zero, 

then equation (1) represents the following differential function:  

 

 

 

Define ( ) ( ) ( ) ( )[ ] T
N10   xF,......xF,xF xF ≡ , then equation (2) can be expressed in the following 

compact matrix form:  
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Assuming (iλ–Cx) is not equal to zero for any i, (0 ≤ i ≤ N), the general solution of equation (3) 

can be given by  

 

 

Where the elements in the vector [ ]N10 ......zz,zz  are the Eigen values and Vj is the Eigen 

vector of the matrix M(D) 1−
.  In equation (4), the coefficients { }ja  can be obtained from the 

boundary conditions by defining }{ }{   C  ii     E and   C  i  iE xuxD >λ=<λ= . By doing 

that, the boundary conditions in equation (4) can then be obtained as below where 
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= is the probability that i sources are in the ON-state and 

)/(  Pon β+ρρ=  is the probability that a source is in the ON-state. Hence, the steady-state 

distributions under the boundary conditions of equation (5) can be used to calculate the 

throughput for the traffic with different threshold values for buffer occupancy control as in 

equation (6).   

 

 

 

 

 

 

 

 

 

With the traffic arrival rate given by  PiA i

N

0i

∑ λ=
=

, then the packet loss probability due to buffer 

overflow will be given by A/T1PL −=  . Likewise, the probability that the output link speed 

at )1(CER t α− , tCER and )1(CER t α+ can be calculated using equation (4) based on the 

boundary conditions presented in equation (5). That is 

 

 

 

 

 

 

 

 

 

In addition, the probability distribution for a buffer occupancy less than )2,1,0m(,Am = is 

given by 
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7. CONCLUSIONS 

In this paper a video smoothing technique is proposed for the transmission of video over a 

limited bandwidth network. An evaluation of the proposed scheme under different scenarios 

was conducted and the results obtained showed good improvements in transmission rate 

variability while having no losses due to smoothing. In particular, a detailed example of the 

transmission of video over an LTE wireless network was considered to provide better insight 

into how the variability of the wireless channel can be taken into consideration when video 

smoothing is performed by the proposed technique. Several video traces of MPEG-4 and H.264 

with different characteristics were used in the evaluation process and the results reflected how 

the H.264 video exhibited more variability than MPEG-4 at similar encoding rates. In addition, 

a queuing model of the smoothing scheme is constructed for H.264 video streams which can be 

generalized to multiple input sources of video and can be used to model video smoothing for 

applications such as IP TV and video distribution over a heterogeneous network.    
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