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ABSTRACT 

Opportunistic Spectrum Access in Cognitive Radios (CRs) calls for efficient and accurate spectrum 

sensing mechanism that provides the CR network with current spectral occupancy information. For a CR 

using energy detection for spectrum sensing, exact knowledge of Signal to Noise Ratio (SNR) at the 

receiver is crucial for determination of the decision threshold. This threshold in turn determines the 

probability of error (Probability of missed detection and probability of false alarm). In this paper, an 

innovative technique is proposed wherein spectral occupancy decisions from different CRs are combined 

and used as a training signal to adapt the local decision threshold. Each CR trains itself such that its 

decision is in alignment with other CRs in the network. Same can be looked at from group intelligence 

perspective where, multiple users, each with incomplete information, can learn from the group’s wisdom 

to reach a supposedly correct conclusion. Simulations under Rayleigh fading show probability of error at 

par with other co-operative spectrum sensing techniques albeit at lower complexity levels. We also probe 

into the accuracy of those decisions with standard techniques from a Cognitive Network perspective to 

prove the wisdom in group knowledge. 
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1. INTRODUCTION 

Cognitive Radio has been considered a promising technology that would address the conflicting 

situation of scarcity of the electromagnetic radio spectrum and under-utilization of spectrum in 

many places [1]. Opportunistic spectrum access is one of the solutions proposed to address this 

situation. A Cognitive Radio (CR) is a technology that enables wireless devices to be aware of 

their surroundings and enable them to access these unutilized spectrum bands (referred to as 

spectrum holes) opportunistically, without affecting the licensed or the Primary User (PU). 

Given its potential, the CR systems have been described as “disruptive but unobtrusive 

technology” [1]. To be able to use a spectrum hole successfully, the unlicensed CR, also 

referred to as the Secondary User (SU) must satisfy the following requirements. 

1. It must be able to detect the presence of a spectrum hole with high accuracy and 

reliability. 

2. It must be able to vacate the spectrum once the PU arrives within allowed time period. 

 

An SU can satisfy these requirements using a spectrum sensing technique that is fast and 

accurate. Spectrum sensing is considered a key technology that needs to be matured before CRs 

become reality. As a result, much work has been done in the area focusing on accuracy of 

spectrum sensing mechanism as well as the sensing speed [2]. 

 

Commonly used spectrum sensing techniques include energy detection, matched filter, 

cyclostationarity based feature extraction etc. In this work, focus is on the energy detection 

based spectrum sensing technique because of its ease of implementation and speed of operation. 

An energy detection device provides a binary decision, indicating spectral band occupancy by a 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011 

32 

 

 

 

PU. The decision is based on a threshold which depends on the current SNR. This threshold can 

be adjusted to balance between the probability of false alarms and probability of detection [8]. 

In time varying channel conditions, where signal strength changes frequently, the threshold 

should be updated continually to accommodate the changing SNR. Optimal threshold in such 

conditions can be determined dynamically, using learning techniques as seen in [3]. These 

techniques require a training sequence consisting of spectrum status of the PU for learning, 

which is an overhead to the bandwidth. Mobility of the transmitter and receiver implies 

changing channel conditions which make the results achieved from training worthless after a 

small duration. Other adaptive techniques such as floating threshold, floating/fixed threshold, 

double floating thresholds have been proposed in [4-6], where the methods are based on SNR 

measurements. Such methods are prone to noise power estimation uncertainty which is 

discussed further in subsection 2.2. 

 

In this paper, a new threshold learning technique for a Cognitive Adhoc Network (CAN) is 

proposed. The scenario is as shown in Figure 1. The training signal for this adaptive system is 

derived from the spectral occupancy information received from other users in the network over 

the common control channel. Each CR adjusts its threshold such a way that its decision is in 

alignment with other CRs in the network. The technique is differentiated from the adaptive data 

fusion techniques [14] in the sense that it is the decision process that is adapted, not the process 

of the combining the available results (Fusion techniques). Same can be looked at from group 

intelligence point of view; where multiple users, each with unreliable information can train 

themselves to reach the correct conclusion using information from others.  

 

 
Figure 1.  A Scenario for CAN 

Remainder of the paper is organized as follows. Section 2 describes the system model under the 

considered scenario. Section 3 describes the proposed adaptive threshold method. Simulation 

model with results are described in section 4. Finally the conclusions and future work are 

presented. 

 

2. SYSTEM MODEL 

In this section, the local spectral sensing technique and the data fusion techniques as applied to 

the scenario under consideration are discussed in detail. The optimal threshold and the proposed 

adaptation of local threshold are also discussed here.  
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2.1. Local Spectrum Sensing: Energy Detection  

Energy detection has been the technique of choice for spectrum sensing due to its low 

complexity, ease of implementation and faster decision making capability. For purpose of this 

work, the focus is solely on the binary decision (PU present or absent) provided by the energy 

detector, rather than the technique itself. Figure 2 shows the block diagram of an energy 

detector [8]. Output of the band-pass filter (with bandwidth W) is followed by a squaring device 

and integrator to measure the received signal energy over the observation interval of T seconds. 

Output is normalized by the noise spectral density N0 to obtain Y, which is compared with a 

decision threshold λ to make the spectral occupancy decision. Same can be formulated as a 

binary hypothesis testing problem [10, 11], where H0 corresponds to the case where PU is 

absent and H1 corresponds to PU being present. 
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Figure 2.  Energy Detector 

The normalized output Y has central and non-central chi-square distributions under H0 and H1 

respectively, each with 2m degrees of freedom as shown below. 

Where m is an integer denoting the time-bandwidth product ‘WT’ and γ is the SNR. The 

distribution of random variable Y under the two hypotheses is as shown below. 
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Γ(.) is the gamma function and 0F1(.,.) is the confluent hyper geometric limit function [8]. The 

conditional distributions under hypothesis H0 and H1 are as shown in Figure 3. 

 
Figure 3.  Distributions of Y under hypothesis H0 and H1 

The success of a spectral sensing technique can be evaluated in terms of its ability to detect the 

presence of PU with minimal false alarms. It can be expressed in terms of probability of 

detection (Pd) and probability of false alarm (Pf). Pf is the measure of lost opportunity by the SU 

where the spectral band is falsely declared as occupied, while Pd is the measure of ability of the 
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SU to use the white spaces without interfering with the PU. Higher Pd is essential for the SU to 

be able to use the licensed band without causing hindrance to the PU. The need to maximize Pd 

conflicts with the requirement for a lower Pf. Design criterion should be chosen such that Pf is 

minimized while guaranteeing Pd to remain above a certain threshold. For the detector shown in 

Figure 2, the expressions for Pd and Pf have been derived in literature [8] as shown below. 
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Γ(a,b) is the incomplete gamma function and Qm(.;.) is the generalized Marcum function. 

Reader is referred to [8,9] for more details. Value of this decision threshold will determine 

whether the receiver is too sensitive (high Pd, high Pf) or too aggressive (low Pd, low Pf). 

 

2.2. Determination of Optimal Threshold for known SNR and ‘m’  

 
To determine the value of λ that would minimize the decision error for the situation concerned, 

a combined error function is formed based on Pf and Pm. (Pm = 1 – Pd) 
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α is the weighting factor to be adjusted based on the situation. For example, if sensitivity is 

crucial, λ is chosen such that Pm is minimized at the expense of high Pf. This can be achieved by 

choosing α close to 1 and vice versa. Since the error term (ε) consists of probabilities and a non-

negative variable α, the error term is guaranteed to be non-negative. Value of λ that will 

minimize the error can be found by determining the first derivative.  
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Next, substituting expression for Pm = 1-Pd, we get 
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Substituting (7) and (8) in equation (5) and equating it to zero we get, 
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Optimum value of the threshold λ for given α, SNR (γ) and m can be obtained by solving 

equation (10). The first derivative of the error function as shown by equation (9) can be seen in 
Figure 4, for α = 1/4, 1/2 and 3/4. Relationship between threshold for different SNRs and 

degrees of freedom has been well investigated in [10-11]. Inclusion of the weighing parameter 

α, gives additional flexibility of choosing the threshold based on the situational requirements. 

 
Figure 4.  Differential of Error versus Lambda for m=4 and SNR=5dB 

 
The performance of a spectrum sensing scheme is limited by the SNR estimation at the CR. 

Error in the SNR estimation will result in incorrect threshold estimation and effectively higher 

probability of error. Figure 5 (reproduced from [16]) shows the performance of the energy 
detector under noise uncertainty, for large values of m. It can be seen that with no noise 

uncertainty, the energy detector can perform well at negative SNR values. However, the 

performance degrades sharply, with errors in noise estimation. In practice, an energy detection 
device must estimate the operating SNR and use them to determine the decision threshold. Due 

to time varying channel conditions and inherent uncertainty associated with the estimation 

process, the estimated SNR and the threshold chosen is sub-optimum, resulting in large decision 

errors. The performance can be improved by updating the threshold using information about the 

local noise and signal power [8,11]. Such adaptation can compensate for local changes in SNR 

and improve on the performance of the energy detector. However, in “hidden node” situations, 
the SU is likely to make incorrect decision with only local measurements at its disposal. 
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Figure 5.  Pm Versus SNR: Static Threshold (replicated from Reference [16]) 

2.3. Distributed Sensing and Data Fusion    

Hidden node conditions can be better handled using spatial diversity or the so-called 

cooperative or distributed spectrum sensing [8, 13]. In the CAN scenario under consideration, 

SUs in the network broadcast their spectral decisions over the common control channel (Figure 

1). Each SU then can use these decisions, along with its own estimation to make a more 

accurate decision about the spectral occupancy. Spatial diversity between different SUs is 

expected to provide considerable performance improvements in the presence of hidden nodes 
and channel fading. 

 

The combined decision about the occupancy of the spectrum band can be made using simple 
logical techniques such as AND, OR or Majority Logic. These techniques treat all decisions 

equally, without taking into account the fact that some SUs may be in lower fading zone, and 

hence more reliable than others. As a result, the performance improvement is minimal. 
Considerable improvement can be obtained if each SU transmits its reliability information (Pd 

and Pf) along with spectral occupancy information (+1 for occupied and -1 for not being 

occupied).  

 

This information would be used to combine the data using log-likelihood (LR) data fusion rule 

[13,15]. With N active SUs in the network, log-likelihood ratio test is 
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The local decision of the i
th
 SU is denoted by di and S

+
 indicates subset with occupancy result 

di=1 and S
-
 with result di=-1. P1 and P0 are the prior probability of the presence & absence of PU 

signals [13]. Decision from each SU is weighed based on its reliability, i.e. Pd and Pf. This 

technique is considered the optimum technique for data fusion provided correct estimates of the 

local probabilities are available. As a result, distributed spectrum sensing with adaptive 
weighing of the local decisions before fusion has been the general approach so far for 

performance improvements [13,14]. However, it has a major drawback of the necessity of 

computing Pd and Pf. which is an overhead and can lead to its own uncertainties. 
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2.4. Adaptive Threshold based on Group Intelligence  
 
In our work, concepts from both the ideas i.e. optimal/adaptive threshold along with data fusion 

discussed above are utilized in an innovative manner. With energy detection as the chosen 

approach for spectral detection, the performance is limited by local SNR conditions and 
accuracy of local noise power estimate. Goal is to improve the accuracy of spectral occupancy 

results by training the SU. This training is done using the global decision derived from other 

SUs in the network. This approach is preferable in following ways:  

1. Separate training signal indicating the presence or absence of PU is not required. 

Training can be done continually, not limited to the training signal. 

2. Training signal derived from spatially diverse SUs is expected to be robust and less 

sensitive to local channel fading. 

 

Looking at the situation from Group Intelligence point of view, each SU “learns” to be more 

like rest of the SUs in its group. Together the SUs are expected to reach a unanimous decision, 
which should be correct in most situations. Group intelligence emerges from the collaboration 

and competition among many individuals, enhancing the social pool of existing knowledge [12]. 

The concept of Group Intelligence obtains prominence in the context of Multi Agent scenarios 

wherein the global decision made is an essence of the all the individual local decisions. In the 

CAN scenario, the group intelligence in terms of the accuracy of the spectral information 

learned by the group of SUs. In other words lesser the number of decision errors, wiser is the 

network. Success of Group Intelligence or wisdom in crowds relies on four basic characteristics. 

An analogy has been drawn with a CAN perspective and is presented in Table 1. (Reference 

[12]) 
  

Table 1.  Criteria for a Group to Be Wise & CAN Analogy 

Criteria Description CAN Features 

Diversity of 
opinion 

Each person should have private 
information even if it is just an 

eccentric interpretation of the 

known facts. 

SUs are spatially distributed, 
each having its own view point 

and showing space diversity  

Independence 

People's opinions aren't determined 

by the opinions of those around 

them. 

Each SU’s measurements of the 

spectrum are independent of the 

other SUs. 

Decentralization People are able to specialize and 

draw on local knowledge. 

It is an adhoc group having no 

centralized entity. 

Aggregation Some mechanism exists for turning 

private judgments into a collective 

decision. 

The data fusion methodology is 

the mechanism which makes 

the group decision regarding 

the spectrum. 

 

2.4.1. System Model  

The proposed adaptive threshold system is as shown in Figure 6. The input, output and the 

desired signals for the adaptive system are as described below:  
 

Input: Yt, output of the energy detector at time instance t.  

Desired Output: Decision dt made using available decisions from other SUs in the group. The 
decision may be obtained using majority logic and  is a hard decision, limited to +1 or -1 at 

instance t. 1 indicating presence of PU and vice versa.  
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Output: Output of the adaptive system is the local soft decision zt obtained using current 
threshold λt , where λt is the current estimate of threshold. zt is limited to a closed interval [0,1]. 

The decision device is a scaled sigmoid function. Larger the difference between the received 

signal power and the threshold, closer is the output (zt) to +1 or 0.  
 

The error is defined as the difference between the output of the decision device and the global 

decision. The threshold λt is updated such that the error is minimized in the mean square sense. 

The update takes place every time instance ‘t’, where t is the sampling period of the energy 

detection device. 

Update Algorithm: 
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At each time instance t, the updated threshold λt+1 is used to make the hard decision about the 
spectral occupancy. It can be seen from the update equation that, the threshold remains 

relatively unchanged in two situations:  

 

• When the error et ~ 0, indicating that the local decision is in agreement with the global 

decision.  

• When output of the decision device is close to 1 or 0. This indicates saturation of the 

sigmoid function or large distance between the input and the threshold.  

 

Thus, the update is slow when local decision is in agreement with global decision (the training 

signal) and when local SNR is high, implying higher confidence in local decisions.  
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However, in case of “hidden node” situations, the local signal strength may be very poor, 
resulting in a strong “no” decision (zt ~ 0). In this case, local decision is deemed not reliable, 

and instead the global decision is used. 

 

Figure 6.  System model at i
th
 SU  

The event diagram of the sensing process is depicted in Figure 7. Each SU senses the spectrum 

continually, generates a hard decision on the presence/absence of the PU and broadcasts this 

information to the entire network. The SUs sense the spectrum and transmit the hard decision at 

least once in a Ts second frame and at the end of which data fusion is performed to obtain the 
desired signal (global decision) dt. The spectrum sensing and broadcasting by each SU is 

asynchronous in nature. Each SU uses the available information from other SUs to generate 

global decision or the training signal. Since the SUs sense asynchronously, the training signal 
may vary for each SU.  

 

 
Figure 7.  Event Diagram at an SU  

 

The decision threshold at each SU is re-calibrated periodically based on the estimated local SNR 

at that instant. This re-calibration is done using optimal threshold as derived in Equation (10). 
This periodic resetting process prevents accumulation of errors in the feedback system. 

 

3. SIMULATION ENVIRONMENT AND RESULTS 

The simulated Cognitive Radio Network scenario consists of ‘N’ SUs and one PU. The PU goes 

on and off randomly. Each SU senses the spectrum periodically, generates a hard decision on 

the presence or absence of the PU and broadcasts this information to the entire network every Ts 

seconds. The SUs operate in Rayleigh fading channel and in presence of Additive White 
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Gaussian Noise (AWGN). The results from individual SUs with local threshold are compared 
with the global decision which is obtained using fused decisions from the remaining (N-1) SUs. 

The fusion logic may be based on simple Majority Logic (ML) or Log Likelihood Ratio Test 

(LLRT) [15]. 
 

At every SU, the threshold is updated as per equation (12).  The updated threshold is used to 

make the local decision about spectral occupancy. This local decision is compared with ground-

truth to determine the probability of error. It can be seen that the adaptive technique achieves 

lower probability of missed detection than using a static threshold, especially in presence of 

SNR uncertainty at the receiver. 
 

Other set of results are obtained by using the optimum LLRT based data fusion technique. For 

LLRT based data fusion, each node must broadcast its hard decision along with reliability 
information (Pd and Pf). This information is used to make a decision about the channel 

occupancy, which serves as the training signal from the adaptive process. Since LLRT based 

data fusion technique is superior to majority logic, the training signal is more reliable, and as a 
result, the adaptive technique performs better. In both cases, the adaptive technique achieves 

lower probability of missed detection than using a static threshold. Figure 8 represents the 

pseudo code of the simulation scenario. 
 

 

 
Figure 8: Pseudo code for Simulation 

 
 

Figure 9 shows simulation results using 10 (N) SUs. The mean operating SNR for the group of 

SUs is 5 dB with a variance of 5 dB. The SNR estimate error at the SUs is 5 dB. In the first 

case, it assumed that each SU broadcasts its hard decision (PU present or absent). The training 

signal for each SU is obtained by fusing these decisions using majority logic decision. In the 

second case, knowledge of (Pd, Pf) for each SU is assumed and training signal is obtained using 
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LLRT. It can be seen that the proposed adaptive technique outperforms the corresponding 
distributed decision technique. The gain is substantial as the local SNR increases, and the 

method always performs as well as the corresponding distributed decision method.  

 
Figure 10 shows the simulation results under same conditions as before, except here the error in 

SNR estimation is smaller; 1 dB. It can be see that the method is relatively insensitive to SNR 

estimation error and continues to perform better than the distributed sensing methods. Figures 

11 and 12 show similar results when, the mean SNR of the group is low (0 dB). Pf is assumed to 

be 0.1 for all simulations. 

 

 

 
Figure 9.  Pm Vs SNR with SNR Estimate Error=5dB, Mean SNR of Group= 5dB.  

 

 
Figure 10.  Pm Vs SNR with SNR Estimate Error=1dB, Mean SNR of Group= 5dB   
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Figure 11.  Pm Vs SNR with SNR Estimate Error = 5dB, Mean SNR of Group = 0dB 

 

 
Figure 12.  Pm Vs SNR with SNR Estimate Error=1dB, Mean SNR of Group= 0dB  

 

The performance is depicted in terms of Pm versus SNR, which is a methodology to quantify the 

performance of a given spectrum sensing mechanism [17]. The lowest SNR for a particular 

targeted reliability is the metric to compare sensing mechanisms. 
 

A decision margin is essentially the distance of the raw data from the decision boundary. For 

example, in a majority logic technique using 20 SUs, the decision boundary is 10. If more than 

10 SUs indicate that spectrum is occupied (d=1), the majority decision is d=1. There would be 
more confidence in the decision if say 19 SUs indicated d=1 rather than 11. So the decision 

margin for a group of N SUs is defined as decision_margin = (SUs in majority-N/2)/N/2 If 11 

SUs were in majority, the decision margin would be very low ~0.1. With 19 SUs in majority, 

the decision margin would be 0.9. Thus the decision margin is an indicator of the confidence we 

have in our final decision and can also be interpreted as reliability of the result. Figure 13 

represents this scenario. 

 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011 

43 

 

 

 

 
Figure 13.  Reliability Versus No. of SUs 

Possible explanation from this phenomenon could be that irrespective of the group size, 

adapting the threshold based on group decision forces the group to be equally good or equally 

bad together. This is essentially the gist of group intelligence and the cognitive radio network 

achieves it using this group intelligence based adaptation. 

 
Extending the established results, it is imperative to observe the performance of the proposed 

algorithm when the group becomes wiser with better SNR conditions. Figures 14 and 15 depict 

this scenario by comparing the Pm with increasing Group SNR. The mean SNR of the group has 

been increased with a constant variance and the error in SNR estimate is retained the same for 

the comparisons. The figures prove the point that the proposed algorithm does better than static 

threshold with majority logic data fusion methods when the group intelligence is low (under low 

Group SNR) and equally well when the group gets wiser(under higher group SNR). The results 

also establish the fact that an empowered self (when SNR of Self SU is higher), as depicted in 

Figure 15, does much better in a group decision making scenario unlike the majority logic data 
fusion technique. 

 

 
 

Figure 14.  Pm Vs Mean SNR of the Group at SNR at Self SU=3dB 
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Figure 15.  Pm Vs Mean SNR of the Group at SNR at Self SU=5dB 

4. CONCLUSIONS 

In this paper, we have applied the concepts of group intelligence to cognitive radio networks. 
Each SU in the group is operating in fading channel conditions with varying noise conditions. 

Reliability of energy detection devices used for spectral detection is known to be low at sub 

zero SNR conditions. As a result, decisions made by the SU are not always reliable. Adapting 

each SU to follow the group, will increase the channel awareness, cognition of each SU is such 

a way that it behaves more like the group. It is possible that if one SU is intelligent (a CR in a 

low fading, low noise zone), the inputs from other not-so-intelligent SUs (CRs in large fading) 
will make it behave less intelligently. However, this is always true with group dynamics, this 

case being no different. A technique to identify the intelligent SU in the group would ensure that 

using group knowledge will only benefit an SU and not harm it in anyway. Techniques referred 
to as “censoring” to limit the number SUs that are broadcasting and the SUs that are used to 

update the group knowledge are currently being investigated. Another source of error would 

arise from errors in the control channel used to broadcast information [17]. The group 
intelligence based adaptation is expected to perform better in this case since it relies on only the 

hard decisions from other SUs and the measurements are expected to be noisy. Group behaviour 

under this situation is also being explored. 
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