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ABSTRACT 
Wireless sensor and actor networks (WSANs) consist of powerful actors and resource constraint sensors 
that are linked together in wireless networks. They mostly rely on actors to make proper decisions and 
perform desired coordination to achieve the goals of the entire network. They are usually deployed in 
critical applications and actor-actor network connectivity is thus vital to their effective utilization. Since 
WSAN applications are mostly deployed in harsh environments, actor nodes may fail and so partition 
their network. We propose a comparatively more efficient distributed approach, nicknamed AOM, to 
restore actor-actor connectivity upon the failure of any actor. We identify critical actors by combining the 
result of determining critical actors using the Stojmenovich’s method with the connectivity dominating set 
(CDS) of the network. This hybrid method of detecting critical actors helps in detecting critical nodes and 
candidate replacement actors more precisely while minimizing the total number of required messages for 
network restoration. The failure handling of actors is done in a proactive manner. Our proposed method 
minimizes both the restoration time of network and the total number of actor movements. When a failed 
actor is a critical node, actors in its neighborhood are relocated in a coordinated way to reconnect the 
actor network. The superiority of our approach compared to other works is shown by simulative 
experiments measuring two important parameters to WSANS, namely, the total number of transmitted 
messages and the total number of actor movements during actor-actor network reconnection process.  
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1. INTRODUCTION 
In recent years, wireless sensor and actor networks (WSANs) have been emerged as a new type 
of ad hoc networks that can be deployed as fully automated systems [1]. With the idea of 
eliminating human intervention from wireless sensor networks (WSNs), WSANs have received 
growing attention from the research community in the past few years. There have been 
numerous application areas for WSAN including monitoring environment for unusually high-
level of radiation, conducting urban research and rescue (USAR), detecting and controlling 
pollution in coastal areas, and performing in-situ oceanic studies of bird/fish migration and 
weather phenomena [2]. 
In most of these applications, actors should coordinate and send messages to each other in order 
to take appropriate decisions and fulfill their pre-specified goals. Therefore, actor-actor 
connectivity is a key challenging issue in WSAN applications.  
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Actor's failure may partition the network causing disruptive application result. Therefore, 
detecting and recovering from actor failure are two significant issues in this context. Recovery 
process must be preferably done autonomously and in a distributed manner in order to be 
efficient to cope with specified functional requirements.  
In this paper, we present a distributed algorithm to detect and recover from actor failures. The 
aim is to reconnect the network with minimum restoration time, total movements of actors and 
number of messages. Most of the actor’s power would be dissipated in communication and 
movement and decreasing the total number of transmitted messages and movements of actors 
are two most important issues in WSAN. Thus, we focus on the number of transmitted messages 
and the number of movements of actors as metrics for evaluating network reconnection 
solutions. It is obvious that the longer the restoration time, the longer the network remains 
disconnected; therefore, minimizing the restoration time is the other concern of actor recovery 
in WSAN. Critical actors (cut vertices) are those that the network will become partitioned 
without them. Critical actors in the network could be determined using the localized algorithm 
proposed by Stojmenovic [3]. Connectivity dominating set (CDS) of the network is also 
determined by using the algorithm proposed in [4]. This algorithm detects the nodes whose 
absence does not lead to any partitioning of the network (dominatee) and by applying the 
algorithm proposed in [3] this process is done precisely. By combining these two methods, 
firstly the critical nodes can be determined, and secondly, the redundant actors of the network 
are detected. So this hybrid method restores the network with minimum total movements, 
restoration time and number of messages. If the actor is critical and there is any dominatee node 
(v) in its neighbor, it sends a message to v to notify that it must replace the failed actor in case 
of failure. If there is not any such actor, the cut vertex sends a request message to all its 
neighbors and asks them to send the maximum allowable movements that they can make in 
order not to be disconnected from their neighbors. In other words, each neighbor calculates the 
maximum distance that it can move towards the failed actor without being disconnected from its 
neighbors and sends a message to notify the cut vertex. After receiving all messages from its 
neighbors, the cut vertex calculates whether the neighbors can reconnect the network in the 
absence of cut vertex or not. If the network cannot be reconnected, a message is sent to the 
nearest neighbor of the cut vertex to replace the cut vertex in case of failure. Every actor sends a 
heartbeat message to its 1-hop neighbor; thus, the failure of actor could be detected by its 
neighbors and the network would be restored in an appropriate time. The novelty of our 
algorithm is that unlike previous works, a failed actor is not always replaced by other actors in a 
cascaded movement. Instead, neighbors collaborate with each other and restore the network 
with minimum latency. The other advantageous point to note is that by detecting both the CDS 
and critical nodes, the restoration process is done more efficiently. It is shown that the proposed 
approach is more efficient in both total movements of actors and restoration time compared to 
other works [2], [5]. 
The rest of paper is organized as follows. Section 2 presents some related work. Section 3 
describes our proposed approach. The empirical results are presented in Section 4, and Section 5 
concludes the paper. 

 

2. RELATED WORK 
The fault tolerance issue in WSANs has been studied in few works in different contexts [2], [5], 
[6]. A fault tolerant model was first introduced in [6] wherein fault-tolerance is achieved by 
means of redundancy. In other words, sensors send their sensed data to more than one actor and 
each actor receives the sensed information from multiple sensors in the event area. In this paper 
we focus on connectivity when an actor fails and we do not consider fault-tolerant 
communication between sensors and actors.  
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Another related work is the one first proposed by Akkaya et al. in 2007 [5]. The main idea was 
to detect the failure of an actor and replace the failed actor in a cascaded manner. Actors get the 
status of each other by sending heartbeat messages periodically. The alternative candidate is 
selected based on the distance to the dead actor and the number of neighbors namely node 
degree. The drawback of this method is that in choosing a candidate to replace a failed actor, it 
does not take into account whether the selected actor is critical or not. This blind movement 
may cause repartitioning of the network again, which is inefficient and boosts the restoration 
time and may cause lots of movement. In other words, the criticality of nodes had not been 
considered in their work. 
Akkaya et al. enhanced their previous method in April 2008 [2]. They use the CDS of the whole 
network in order to detect the cut-vertex node. After detecting these nodes, each node picks the 
appropriate neighbor to handle its failure in the case of failure in future. The objective is to 
choose a neighbor that may not partition the network again. In order to detect the cut vertex 
precisely, a depth-first search is performed for each dominator. The main drawback of their 
approach is that a delegated actor exactly replaces a failed neighbor, which may be inefficient 
and unnecessary; as we will show that in most cases the network could be connected with less 
total number of movements. We use a hybrid method to detect the cut vertex node, so our 
proposed method detects the cut vertex actors more exactly and restores the network more 
intelligently and more efficiently with the same number of messages compared to [2]. We 
propose a method to relocate the neighbors of the dead actor in a way that the network is 
reconnected by fewer total number of actors' movements and less restoration time compared to 
the pervious works.  
Only one work [7] is done to maintain the connectivity between sensors and actors and so it is 
irrelevant to actor-actor recovery issue in this paper. 
Few works consider connectivity [8] at initial deployment of the network; while our objective is 
to provide connectivity after the failure of actors.  
In [8] the aim is to relocate the actor so that the maximum coverage is achieved while 
maintaining connectivity among actors. This is done by applying the concept of repelling forces 
among neighboring actors. Our method differs from them as we assume that the network may 
partition and our goal is to restore the network considering connectivity. 
Connectivity management has been also studied in mobile sensor networks. In [9] inter-actor 
connectivity is maintained by providing 2-connectivity among each actor and the goal is to keep 
the 2-connectivity in the case that actors fail. The main idea is to move non-critical nodes while 
keeping critical nodes static unless they become non-critical. It assumes that the network is 
already 1-connected. However, providing 2-connectivity in the network may not be always 
possible. In [10] a 1-connected ad-hoc network is transformed to 2-connected network by 
moving certain nodes. 
The idea of cascading movement has been deployed in many researches before [11], [12]. We 
combine this method with block movement. 
 

3. OUR APPROACH 
This section describes our proposed algorithm for restoring actor-actor connectivity in WSANs 
with minimum latency. Section 3.1 defines the network assumptions. Section 3.2 states the 
problem, and Section 3.3 presents the details of the proposed algorithm. 
 
 3.1. Assumptions 
There are a set of resource-constraint sensors and resource rich actors that are placed randomly 
throughout an application area. Since Actors are expensive, their number is limited in a 
network. The sensor network is dense and each actor and sensor knows its position. After 
deployment, each actor finds its neighbors and a connected network is formed. 
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3.2. Problem Statement 
Let us assume that there are n actors and m sensors where n<<m. Actors form a connected 
graph. Each actor knows its location. Actors may fail due to the intrinsic nature of the 
environment. If we consider each actor as a node, and draw an edge between the actors that are 
in their transmission range, the failed actor may be a cut vertex and partition the graph. The goal 
is to restore the network so that the graph is connected again. If the actor is not a cut vertex but 
it creates a large hole in the network, it is desired to restore the network to cover the hole. A part 
of an actor network is shown in Figure 1, where L is the cut vertex as its failure partitions the 
network.  
Therefore, we have to detect critical nodes and actor failures, and determine a set of movements 
to restore the network based on the type of the failed actor (i.e. critical or non-critical). The aim 
is to minimize the restoration time, number of messages and total amount of movements. 
 
3.3. Our Proposed Method 
Our method, nicknamed AOM, consists of three main steps or parts: 1) network setup, 2) 
monitoring the neighbors’ status and detecting failure of actors, and 3) restoring the network 
after actor failure. 
 
3.3.1. Network Setup  

After the network is deployed, the following steps are taken: 1) Determining the critical node 
and the CDS, and 2) Determining restoration policy for each critical actor. 
 

3.3.1.1. Determining Critical Nodes and CDS 

A number of methods for determining critical node(s) have been proposed which are 
categorized as centralized, distributed and localized [13], [14]. Global algorithms are most 
accurate but more expensive and degrade the performance because they entail a huge amount of 
message transmissions. Localized algorithms are more favorable in this regard.  
We use the localized method proposed by Stojmenovic [3]. It is not as accurate as global 
algorithms, but it detects the critical nodes quickly. The main concept is that each node sends a 
hello message to k-hop neighbors. If the k-hop neighbors construct a connected graph, then the 
node is not critical; otherwise, the node is critical. We use 2-hop neighbor's information to 
detect critical nodes and use positional information of the neighbors to predict critical nodes 
more accurately. Figure 1 shows an example. By using 2-hop neighbors information, two sub-
graphs {O, P} and {M, L} are determined for node N which are two disjoint sub-graphs; thus 
node N is critical.  With the aid of 2-hop neighbors’ information, node G is identified as non-
critical. Using 2-hop information, we also can calculate CDS of the network (dominator nodes) 
as proposed in [4].  So, the nodes are categorized as follows: 

1) Dominatee nodes that are detected as the none cut-vertex node by the algorithm in [3] 
like A in Figure 1. The movement or failure of these nodes does not partition the 
network. 

2) Dominator nodes that are detected as none cut vertex node by algorithm in [3], like C in 
Figure 1. The movement of these nodes may partition the network only if the cut vertex 
node in their neighbors fails and they relocate. 

3) Dominator nodes that are detected as the cut vertex node like K in Figure 1. The failure 
of these nodes causes network partitioning. 
  

Stojmenovic [3] state that the number of actors that are falsely declared as critical depends on 
the number of neighbors. Since the number of actors in the network is limited, with an average 
number of 4 to 11 neighbors, the average percentage of actors that are falsely detected as critical 
would be below 15%. 
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3.3.1.2. Restoration Policy Determination 

We use a proactive policy in order to restore the network in case of critical actor failure. After 
critical nodes in the network are determined, each critical node requests its neighbors to send the 
maximum distance that they can move towards the critical node without being disconnected 
from their other neighbors. 

 
Figure 1. A network with node N as the cut vertex by 2-hop information 

If the cut vertex node fails, the network is partitioned into two or more sub networks. By 
applying the proposed method, we can determine to which partition each neighbor of the cut 
vertex node belongs. 
If there is a dominatee node (v) in the neighbor of the cut vertex, a message is sent to v to notify 
that it must replace the cut vertex in case of failure. If there is any such actor, the maximum 
allowable movement of each neighbor of the cut vertex is calculated. It must be noted that some 
neighbors of the cut vertex may belong to one partition. Therefore, from each partition, the 
nearest neighbors to cut vertex are selected and a request message is sent to each of them to 
send their maximum movement. Each neighbor of the cut vertex that receives the message 
calculates the location of the furthest actor in its own neighbor. Therefore, it would determine 
how much each neighbor of the cut vertex could move towards the cut vertex without violating 
the connectivity of the network.  
For example, Figure 2 shows how the maximum movement of each actor is calculated. In order 
to calculate the maximum allowable movement of A11, in each partition of its neighbors {{A13, 
A14}, A12} the nearest actor to A11 is selected {A13, A12}. Then, the farthest actor among 
them A12 is selected.  
Each actor neighboring the cut vertex calculates t —the maximum allowable distance as:  

(1) where r-d’ is the distance that A11 could move in order not to be 
disconnected from its farthest neighbor A12. 
At the critical node, after receiving all the messages from neighbors, it checks whether there is a 
neighbor v, whose maxMovement covers the location of the cut vertex. This condition occurs if 
v does not have any other neighbor except the cut vertex, so it is a good candidate for 
replacement. If this criterion is held, v is responsible for handling the failure of the actor and it 
would replace the cut vertex in case of failure. If this criterion is not held, the cut vertex 
calculates whether the network could be reconnected if neighboring actors move by their 
maxMovement. Figure 2 shows the pseudo code for determining whether the network is still 
connected in the absence of cut vertex. 
The newLocation of an actor is the location between the curlocation and curlocation + 
maxMovement that actor could be connected to other neighbors in that point. In other words, 
newLocation is the point that the actor would be in the transmission range of one or more actors. 
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As it is shown in Figure 2, the neighbor with minimum required movement is found at first and 
it is checked whether A could see other neighbors of the cut vertex. Considering the maximum 
allowable movements of actors, the neighbors that could see node A, check whether they could 
see other neighbors that are not in the transmission range of A (lines 14 to 22). 
 

 Connectivity Checking Algorithm 

1:  IsNetworkConnectedByMaxMovement() 
2:  { 
3:   SortNeighborsOnMaxMovement(neighborsList) 
4:   A = neighborsList[0] 
5:   Add A to ConnectedNodesList 
6:   A.newLocation = A.curLocation + A.MaxMovement 
7:   foreach node B in nieghborsList do 
8:    if B is in A.transmissionRange 
9:     Add B to ConnectedNodesList 
10:     B.newLocation = MaxCoverPoint(B, A) 
11:    else 
12:     Add B to NotConnectedNodesList 
13:   endloop 
14:   foreach node C in ConnectedNodesList do 
15:    foreach node D in NonConnectedNodesList do 
16:     if D is in C.transmissionRange 
17:      Remove D from NonConnectedNodeList 
18:      Add D to ConnectedNodesList 
19:      D.newLocation = MaxCoverPoint(D, C) 
20:     endif 
21:    endloop 
22:   endloop 
23:   if(NonConectedNodeList is Empty) 
24:    return true 
25:   else 
26:    return false 
27:  } 
28:  MaxCoverPoint(B, A) = P, where Distance(P, B.curLocation) <=  
29:  B.MaxMovement and P is in A.TransmissionRange 

Figure 2. The pseudo code for determining the network connectivity 

At lines 23 to 26, it is checked whether there is any actor in the neighbor of the cut vertex that is 
not connected to other neighbors by the means of its maximum movement. The procedure 
returns TRUE if there is not any such actor and returns FALSE otherwise.Therefore, three 
conditions are checked in each cut vertex: 

1) If there is a dominatee neighbor u in the neighborhood of the cut vertex, it is delegated 
to replace the cut vertex in case of failure and the cut vertex sends a message to notify 
u.  

2) If there is not any such actor and the network could be reconnected by moving the 
neighbors, the location of the neighbors (newLocation) is sent to them by the cut vertex.  

3) If even maximum movements of all actors in the neighborhood could not reconnect the 
network, the replacement is done through cascaded movement. In other words, the 
nearest actor is found and the cut vertex sends a message to notify that it must replace 
the cut vertex in case of failure. 
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3.3.2. Detecting the Failure of an Actor 

Each actor periodically sends its ID and location to its neighbor. If the actor does not receive 
any messages for a specified period of time from a particular actor, it is considered as having 
failed and the recovery process starts. 
 
3.3.3. Restoring the Failed Actor  

In the case of cut vertex failure, one of the following three states may hold based on the three 
conditions described at Section 3.3.1.2:  

1) A delegated dominatee actor u, detects the failure of the cut vertex and replaces the cut 
vertex. 

2) The neighbors would detect the cut vertex failure and move to their new location. 
3) The neighbor of the cut vertex actor would replace the failed actor in a cascaded 

movement. This movement causes network partitioning that based on its state of being 
critical node or not, we act differently. If it was a noncritical actor, it finds its nearest 
neighbor and sends it a message to be relocated too (Relocation Message). If the 
neighbor is a critical actor, it finds a nearest neighbor in each partition and sends them 
the Relocation Message. Each actor that receives the Relocation Message from its 
neighbors runs the same algorithm: if its movement to new location causes network 
partitioning, it sends the Relocation Message to its neighbor(s) too, and if not, it moves 
to its new location and sends an acknowledgment to the actor, which has received a 
Relocation Message from it. Actors do not move before they receive an 
acknowledgment message from one of their neighbors. Upon receiving an 
acknowledgment, each actor moves to its known new location and sends an 
acknowledgment message to the actor that had sent it a Relocation Message. 
 

Our method helps to restore the network earlier with fewer total movements of actors compared 
to other related work. For example, if A3 fails in Figure 3, according to [2], A7 is responsible for 
finding a nearest dominatee actor A4 to replace the failed actor. The network is then restored by 
cascaded movement, meaning that A4 is replaced by A7 and A7 is replaced by A3. However, 
according to our approach, the network is restored earlier with fewer total movements of actors.  

  

 

Figure 3. Maximum Allowable movement of each actor 
 
The worst-case scenario occurs when all the neighbors of a failed actor are critical as in the 
example depicted in Figure 4. When all actors are critical, it is more probable that more actors 
need to be relocated in order to reconnect the network. 
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Each neighbor (A2, A4) of the failed actor A3 moves so that the network is reconnected again. 
Before A4 moves to its new location A4' it finds that its movement causes network partitioning. 
Therefore, it sends a relocation message to A5. The movement of A5 does not violate the actor 
connectivity anymore; therefore, it moves to its new location and sends an acknowledgment to 
A4. Upon receiving the acknowledgment message, A4 moves to its new location A4'. 

 
Figure 4. A worst-case topology with all critical nodes in the neighborhood 

 
Therefore, the network needs less total movements of actors in order to be reconnected 
compared to the case that actor is being replaced in a cascaded movement [2]. In the worst case 
that actors are exactly located in R (transmission range of actor) distance from each other, the 
total movements of actors is equal to the total movements of actors reported in [2] but the 
amount of movements of each actor decreases, so it helps actors to have longer lifetime. 
 
4. EVALUATION 
As we mentioned in Section 1, we consider the total number of transmitted messages and the 
total number of movements of actors as two major metrics for evaluating WSANs’ connectivity 
approaches. Table 1 compares the detailed number of transmitted messages for each nodes type, 
separated by different phase of connectivity restoration process. As it is shown in Table 1, AOM 
is superior on transmitting fewer number of messages in most cases in contrast to other 
approaches like PADRA and PADRA+.  
 

Table 1. Comparative number of transmitted messages 

Message Type 

Detecting Cut 
Vertexes DFS Neighbors Relocation Node Type 

AOM PADRA(+) AOM PADRA+ AOM PADRA(+) AOM PADRA(+) 

Dominatee 3 3 - - - - - - 

Dominator: 
has at least one dominatee in 
neighbor 

3 3 - - 1 1 - - 

non cut vertex 3 - - - 
 

cut vertex (1*) 3 - 2 + n - 
 

Dominator: 
does not have 
any dominatee 
in neighbor 

cut vertex (2*) 3 

3 

- 

t + n 

2 + n 

1 

2*k 

2*k 

 
(1*) is the condition where the neighbor could reconnect the network as it is showed in Figure 2. 
(2*) is the condition where cascaded movement is done 
n is the number of neighbors, k is the number of hops to the closest dominates and t is the 
number of nodes within the sub tree headed by the closest neighbor. 
In order to evaluate our approach, we created a connected WSAN whose actors were initially 
connected to each other and were spread randomly. Simulation was carried out in Ptolemy II 
[15]. In each simulation, one critical node whose neighbors were all critical was selected as a 
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failed actor. Five different topologies were simulated at each run. The total number of messages 
and the total movements of actors were considered and the average was calculated. We 
considered messages for determining the cut vertices, detecting and handling the failure of 
actors and restoring the network. Each run was compared to PADRA+ [2]. 
Figure 5 compares the total movements of actors in PADRA, PADRA+ [2], and Optimal 
Cascading with our approaches (AOM). In optimal cascading, each actor knows the topology of 
the whole network which needs that each node broadcast its status to all the other nods. 
Although in optimal cascading the shortest path to the nearest non critical actor could be 
determined. Optimal cascading approach has an excessively high overhead due to the large 
message transmission and forces substantial expends to WSAN that makes it incapable of being 
applicable in real experiments. It is observed that as the number of actors increase, the total 
movements of actors does not increase significantly. This is because, firstly, the number of cut 
vertices decreases, and secondly, as the number of cut vertices decreases, the number of actors 
that are falsely detected as a cut vertex by the Stojmenovich’s method [3] decreases. Thus, as it 
is illustrated, our approach performs more efficient especially when the number of actors is high 
and consequently the number of cut vertices is low, compared to both PADRA and PADRA+ 
approaches because detecting the critical actor is done more precisely by our approach than 
other approaches. Figure 6 compares the number of transmitted messages in PADRA, PADRA+ 
and our approach (AOM). We eliminate the optimal cascading method from this comparison 
because of its far more actors’ movements compared with other approaches that decreases the 
visual accuracy of the comparison chart depicted in Figure 6. Therefore, we separately 
compared the optimal cascading approach with our approach in Figure 7. As it is observed in 
Figure 6, the number of sent messages grows as the number of actors increase. This is because 
the determination of cut vertices requires more messages to be sent to a high number of actors. 
Figure 6 shows the superiority of our approach on transmitting less number of messages through 
network reconnection process, compared to other works. 
Figure 7 also shows that our approach is significantly more efficient in number of transmitted 
message for network reconnection compared to optimal cascading method. 

 

 

Figure 5. Comparative total movements of actors 
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Figure 6. Comparative total number of messages 

 

 

Figure 7. Comparative total number of messages 

 

5. CONCLUSION AND FUTURE WORKS 
This paper presented an efficient method to detect and repair the failure of actors in WSANs. 
The proposed restoration process aimed to reconnect partitioned networks. Unlike the previous 
works like [2] that replace a failed actor with the aid of cascaded movements, the neighbors of a 
failed actor communicate with each other in order to reach an agreement and restore the 
network. By combining the methods for detecting critical nodes by the Stojmenovich method 
[3] and the CDS method [4], our method decreased the total number of messages, individual 
movements of each actor, as well as the total movements of all actors in the network compared 
to [5]. It also prevented extra movements especially when all the neighbors of a failed actor 
were critical. Another advantage of our approach was in its significant reduction in restoration 
time of the network. 
Future expected works include the consideration for coverage as a factor for restoring the actor 
network after actor failure, sensor-actor delay, obstacles that could affect the actor movements 
in real networks and therefore the restoration policy, and three-dimensional actor locations 
instead of two-dimensional locations assumed in our current work. Given the high rate of actor 
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failures in harsh environments, finding proper solutions for simultaneous failures of critical 
actors in a neighborhood merits further studies. 
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