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ABSTRACT 

The high-level contribution of this paper is a simulation-based comparison of two contrasting categories 

(minimum node size vs. stability) of connected dominating sets for mobile ad hoc networks. We pick the 

maximum density-based CDS (MaxD-CDS) and Node ID-based CDS (ID-CDS) to be representatives of 

the minimum node size-based CDS algorithms; the minimum velocity-based CDS (MinV-CDS) and the 

node stability index-based CDS (NSI-CDS) are chosen as representatives for stability-driven CDS. The 

MaxD-CDS, ID-CDS and MinV-CDS algorithms prefer to respectively include nodes with a larger 

number of uncovered neighbors, larger node ID and lower velocity into the CDS; the NSI-CDS algorithm 

prefers to include nodes with a larger value for the sum of the predicted expiration times of the links with 

the neighbor nodes. We simulate these algorithms under diverse conditions of node mobility and network 

density. We observe the MinV-CDS to be the most stable among all the CDSs as well as incur a lower hop 

count per path (through the CDS nodes) between any two nodes in the network. However, the MinV-CDS 

incurs a relatively larger CDS node size and edge size compared to the other three CDSs. Owing to a 

larger control overhead that could be incurred while broadcasting through a MinV-CDS (with larger 

number of CDS nodes and edges), the NSI-CDS can be considered as the best choice from the points of 

view of delay, energy, bandwidth and fairness of node usage. 
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1. INTRODUCTION 

A Mobile ad hoc network (MANET) is a category of wireless networks in which the topology 

changes dynamically with time due to arbitrary node movement. The MANET nodes have 

limited battery charge and hence operate with a restricted transmission range to conserve energy 

as well as avoid interference and collisions that may result from transmitting over longer 

distances. As a result, MANET routes are often multi-hop in nature and also temporally change 

depending on node mobility and availability. MANET routing protocols (for unicasting, 

multicasting and broadcasting) have been predominantly designed to be on-demand in nature 

rather than using a proactive strategy of determining the routes irrespective of the need [1][2]. 

The MANET on-demand routing protocols typically use a network-wide broadcast route-reply 

cycle (called flooding) to discover the appropriate communication topology (path, tree or mesh) 

[3]. A source node initiates the flooding of the Route-Request (RREQ) packets that propagate 

through several paths and reach the targeted destination (for unicasting) or receiver nodes (for 

multicasting). These nodes choose the path that best satisfies the principles of the routing 

protocol in use and respond with a Route-Reply (RREP) packet to the source on the selected 
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route. With flooding, every node in the network is required to broadcast the RREQ packet 

exactly once in its neighborhood. Nevertheless, the redundancy of retransmissions and the 

resulting control overhead incurred with flooding is still too high, as every node spends energy 

and bandwidth to receive the RREQ packet from each of its neighbors. 

A Connected Dominating Set (CDS) of a network graph comprises of a subset of the nodes such 

that every node in the network is either in the CDS or is a neighbor of a node in the CDS. 

Recent studies (e.g. [4][5][6][7][8]) have shown the CDS to be a viable backbone for network-

wide broadcasting of a message (such as the RREQ message), initiated from one node. The 

message is broadcast only by the CDS nodes (nodes constituting the CDS) and the non-CDS 

nodes (who are neighbors of the CDS nodes) merely receive the message, once from each of 

their neighboring CDS nodes. The efficiency of broadcasting depends on the CDS Node Size 

that directly influences the number of redundant retransmissions. One category of CDS 

algorithms for MANETs aim to determine CDSs with reduced Node Size (i.e., constituent 

nodes) such that whole network could be covered as fewer nodes as possible. However, as 

observed in this paper and some of our previous work [9], such minimum node size-driven CDS 

have been observed to be unstable (i.e. have a limited lifetime). The other category of MANET 

CDS algorithms focus on maximizing the CDS Lifetime such that the control overhead incurred 

in frequently reconfiguring a CDS is reduced. Such stability-driven CDSs have been observed 

[9] to incur a larger Node Size and ratified through the simulation studies in this paper. We 

evaluate the tradeoff by calculating the ratio of the Node Size and Lifetime for the two 

categories of CDS algorithms. 

We pick the maximum density-based CDS (MaxD-CDS) [10] and Node ID-based CDS (ID-

CDS) [11] to be representatives of the minimum node size-based CDS algorithms; the minimum 

velocity-based CDS (MinV-CDS) [12] and the node stability index-based CDS (NSI-CDS) [9] 

are chosen as representatives for stability-driven CDS. The NSI of a node is defined as the sum 

of the predicted expiration times of the links (LETs) with the neighbor nodes that are not yet 

covered by a CDS node; the NSI-CDS algorithm prefers to include nodes with larger NSI values 

into the CDS. The MaxD-CDS algorithm prefers to include nodes with the largest number of 

uncovered neighbors into the CDS; the ID-CDS algorithm prefers to include nodes with a larger 

node ID and having at least one uncovered neighbor into the CDS; and the MinV-CDS 

algorithm opts for slow moving nodes to be part of the CDS. We evaluate the four CDS 

algorithms under diverse conditions of network density and node mobility with respect to four 

metrics: CDS Lifetime, CDS Node Size, CDS Edge Size and the Hop Count per Path. To the 

best of our knowledge, we could not find such a comprehensive comparison study of the 

different CDS algorithms in the MANET literature. 

We observe the MinV-CDS to incur a significantly larger lifetime compared to the other three 

CDSs as well as incur a lower hop count per path (through the CDS nodes) between any two 

nodes in the network. However, the MinV-CDS requires relatively more nodes to be part of the 

CDS to provide stability. Nevertheless, the Node Size-Lifetime tradeoff ratio is observed to be 

the lowest for the MinV-CDS for a majority of the scenarios. The rest of the paper is organized 

as follows: Section 2 presents a generic CDS algorithm that can be used to study each of the 

four CDS algorithms (MaxD-CDS, ID-CDS, MinV-CDS and NSI-CDS) that will be analyzed in 

the simulations. Section 3 presents the algorithm used to validate the existence of a currently 

known CDS at a particular time instant and decide on the need to determine a new CDS. Section 

4 presents examples to illustrate the construction of the two minimum node size-based CDS 

(ID-CDS and MaxD-CDS). Section 5 presents examples to illustrate the construction of the two 

stability-based CDS (MinV-CDS and NSI-CDS). Section 6 presents the simulation results 

observed for these four CDSs and evaluates the Node Size – Lifetime tradeoff. Section 7 

concludes the paper and describes future work. Throughout the paper, the terms ‘vertex’ and 

‘node’, ‘edge’ and ‘link’, ‘path’ and ‘route’, ‘packet’ and ‘message’ are used interchangeably. 

They mean the same. 
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2. GENERIC CDS CONSTRUCTION ALGORITHM 

In this section, we present a generic algorithm that can be used to construct the four different 

CDSs, with appropriate changes in the data structure (Priority-Queue) used to store the list of 

covered nodes that could be the candidate CDS nodes and the use of the appropriate criteria in 

each of the iterations of the algorithm to evolve the particular CDS of interest. The advantage 

with proposing a generic algorithm is that all the four CDSs can be constructed with virtually 

the same time complexity. 

2.1 Network Model 

The network model used in this research is described as follows: 

• We assume a homogeneous network of wireless nodes, each operating at a fixed 

transmission range, R. 

• We use the unit-disk graph model [13] according to which there exists a link between any 

two nodes i and j at (Xi, Yi) and (Xj, Yj) in the network as long as the Euclidean distance 
22

)()( jiji YYXX −+− is less than or equal to the transmission range per node. 

• The set of neighbors of a node i, Neighbors(i), comprises of nodes that are connected to 

vertex i in the unit-disk graph model. 

• A node learns about its own location through location service schemes such as the Global 

Positioning System (GPS) [14] or any other scheme (e.g. [15]). 

• A node learns the location and mobility parameters (velocity and direction of movement – 

measured as the angle subscribed with respect to the positive X-axis) of its neighbor nodes 

through the beacon messages periodically broadcast by their nodes in the neighborhood. 

2.2 Data Structures 

The data structures used by the CDS algorithm are as follows: 

• CDS-Nodes-List: This list includes all the nodes that are part of the CDS 

• Covered-Nodes-List: This list includes all the nodes that are either part of the CDS or is at 

least a neighbor node of a node in the CDS. 

• Priority-Queue: This list includes all the nodes that are in the Covered-Nodes-List (but not 

in the CDS-Nodes-List) and are considered the candidate nodes for the next node to be 

selected for inclusion in the CDS-Nodes-List. The order in which the vertices are stored in 

the Priority-Queue varies with the CDS algorithms as described below. Any tie between the 

nodes is broken based on the node IDs (the contending node with a relatively larger ID is 

placed ahead of the other contending nodes). 

o For the MaxD-CDS algorithm, the Priority-Queue stores the covered non-CDS nodes in 

the decreasing order of the node density (number of uncovered neighbors); the node 

with the largest number of uncovered neighbors is in the front of the queue. 

o For the ID-CDS algorithm, the Priority-Queue stores the covered non-CDS nodes in the 

decreasing order of their node IDs and have at least one uncovered neighbor node; the 

node with the largest ID and has at least one uncovered neighbor node is in the front of 

the queue. 

o For the MinV-CDS algorithm, the Priority-Queue stores the covered non-CDS nodes in 

the increasing order of the node velocities and have at least one uncovered neighbor 

node; the node with the lowest velocity and having at least one uncovered neighbor 

node is in the front of the queue. 

o For the NSI-CDS algorithm, the Priority-Queue stores the covered non-CDS nodes in 

the decreasing order of the Node Stability Index (NSI, defined in Section 2.3) values; 

the node with the largest NSI value is in the front of the queue. 
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2.3 Auxiliary Variables 

• Node Stability Index: For the NSI-CDS algorithm, during a particular iteration, the Node 

Stability Index (NSI) value of a node is the sum of the predicted expiration times of the 

links (LETs) with the uncovered neighbor nodes. At any moment, every node maintains a 

LET-table comprising of the estimates of the LET values to each of its neighbor nodes 

based on the latest beacons received from the neighbor node. The predicted link expiration 

time (LET) of a link i – j between two nodes i and j, currently at (Xi, Yi) and (Xj, Yj), and 

moving with velocities vi and vj in directions θi and θj (with respect to the positive X-axis) is 

computed using the formula proposed in [16]: 

          
22
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      where a = vi*cosθi – vj*cosθj; b = Xi – Xj; c = vi*sinθi – vj*sinθj; d = Yi – Yj 

• CDS-Select-node: For every iteration, the candidate node (node s in the pseudo code of 

Figure 1) selected for inclusion into the CDS-Node-List depends on the criteria used by each 

of the CDS algorithms.  

o The CDS-Select-node for the MaxD-CDS algorithm is the covered non-CDS node with 

the largest node density (i.e., the largest number of uncovered neighbors). 

o The CDS-Select-node for the ID-CDS algorithm is the covered non-CDS node with the 

largest ID and has at least one uncovered neighbor node. 

o The CDS-Select-node for the MinV-CDS algorithm is the covered non-CDS node with 

the lowest velocity and has at least one uncovered neighbor node. 

o The CDS-Select-node for the NSI-CDS algorithm is the node with the largest NSI value. 

Note that the values for the density (the number of uncovered neighbors) and NSI (sum of 

the predicted LETs of the links with uncovered neighbors) for the nodes could change after the 

end of a particular iteration, depending on the updates to the CDS-Nodes-List and Covered-

Nodes-List; this would lead to rearrangement of the entire Priority-Queue at the end of each 

iteration of the MaxD-CDS and NSI-CDS algorithms. On the other hand, the values for the node 

velocity and node ID remain the same for each of the iterations of the MinV-CDS and ID-CDS 

construction algorithms on a particular instance of the network graph. 

 

2.4 Description of the Generic CDS Construction Algorithm 

The algorithm forms and outputs a CDS based on a given input graph representing a snapshot of 

the MANET at a particular time instant. Specifically, the algorithm outputs a list (CDS-Node-

List) of all nodes that are part of the CDS formed based on the given MANET. The generic 

description and pseudo code given here (Figure 1) can be adapted for the particular CDS 

algorithm by appropriately incorporating the criteria for choosing the CDS-Select-node for each 

of the iterations as well as the criteria for maintaining the Priority-Queue during the different 

iterations of the CDS algorithm on a particular instance of the network graph. 

The first node to be included in the CDS-Node-List is the CDS-Select-node (s) chosen according 

to the criteria discussed in Section 2.3. A CDS node is considered to be “covered”, so a CDS 

node is additionally added to the Covered-Nodes-List as it is added to the CDS-Node-List. All 

nodes that are adjacent to a CDS node are also said to be covered, so the uncovered neighbors of 

a CDS node are also added to the Covered-Nodes-List and to the Priority-Queue, as the node is 

added to the CDS-Node-List. The Priority-Queue for a particular CDS algorithm is maintained 

according to the criteria discussed in Section 2.2. The node at the front of the Priority-Queue is 

the next candidate node to become the CDS-Select-node, as long as the node satisfies the criteria 

mentioned in Section 2.3.  
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If the Covered-Nodes-List does not contain all the vertices of the input graph and the Priority-

Queue is not empty, we dequeue the Priority-Queue to extract a CDS-Select-node s that is not 

yet in the CDS-Node-List. All the uncovered neighbor nodes of node s are added to the 

Covered-Nodes-List and to the Priority-Queue; node s is also added to the CDS-Node-List. The 

above procedure is repeated until the Covered-Nodes-List contains all the vertices of the graph 

or the Priority-Queue becomes empty. If the Priority-Queue becomes empty and the Covered-

Nodes-List does not have at least one node that is present in the network graph, then the 

underlying network is considered to be disconnected. 

The time complexity of the generic CDS algorithm can be given as: Θ((|E| + |V|)*log|V|) on a 

network graph of |V| nodes and |E| edges – each of the |V| nodes and their associated edges have 

to be explored for inclusion in the CDS. If the Priority-Queue is implemented as a binary heap, 

it takes Θ(log|V|) time to reorganize the heap after each dequeue and enqueue operation. There 

could be a total of |V| dequeue operations, one for each of the iterations and a total of |E| 

enqueue operations, one for every edge that is traversed across all the iterations.    

 

 
Input: Network Graph G = (V, E), where V is the set of vertices and E is the set of edges 

           CDS-Select-node s – vertex chosen according to the selection criteria in Section 2.3 

Auxiliary Variables and Functions:  
CDS-Node-List, Covered-Nodes-List, Priority-Queue, Neighbors(v) for every v in V   

Output: CDS-Node-List // contains the list of nodes part of the CDS. 

Initialization: 

Covered-Nodes-List = {s}; CDS-Node-List = Φ; Priority-Queue = {s} 

Begin Construction of CDS 

 

     while ( |Covered-Nodes-List| < |V| and Priority-Queue ≠ Φ) do    

         CDS-Select-node s = Dequeue(Priority-Queue)  

                      // where s∈Covered-Nodes-List and s∉CDS-Nodes-List 

                     // CDS-Select-node s is selected according to the criteria mentioned in Section 2.3.        

         CDS-Node-List = CDS-Node-List U {s} 

  

         for all u∈Neighbors(s) and u∉Covered-Nodes-List                                    

              Covered-Nodes-List = Covered-Nodes-List U {u} 

              Priority-Queue = Priority-Queue U {u} 

         end for 

  
         Rearrange the Priority-Queue according to the criteria for ordering the nodes 

 

      end while 

 
      if (|Covered-Nodes-List| < |V| and Priority-Queue = Φ) then 

            return NULL  // the network is disconnected and there is no CDS covering all the nodes 

      end if  

 

   return CDS-Node-List 

End Construction of CDS 

 

Figure 1: Generic Pseudo Code for CDS Construction 
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3. ALGORITHM TO VALIDATE THE EXISTENCE OF A CDS 

To reduce the control overhead, we intend to use a CDS as long as it exists and opt for a new 

CDS only if the currently known CDS ceases to exist. To determine whether a currently known 

CDS exists at a particular time instant, we construct a CDS-Edge-List comprising of edges that 

exist between any two nodes (according to the unit-disk graph model) in the CDS-Node-List 

known at that time instant. The two conditions that we test for are: (i) The CDS-induced graph 

comprising of the CDS-Node-List and the CDS-Edge-List should be connected and (ii) For 

every non-CDS node, there should be at least one CDS node as neighbor node. The pseudo code 

for the CDS validation algorithm is presented in Figure 2. Condition (i) is validated by running 

the classical Breadth First Search (BFS) algorithm [17] on the CDS-induced graph. Condition 

(ii) is validated only if condition (i) holds true. The algorithm returns true only if both the 

conditions hold true; otherwise, it returns false. 

 
 

Input: CDS-Node-List // Set of vertices part of the CDS                                

Auxiliary Variables and Functions: 

   CDS-Edge-List – Set of edges, ⊆ E, between the vertices that are part of CDS-Node-List 

   connectedCDS – Boolean variable that stores information whether the CDS-induced sub graph 

                               of G (comprising of the CDS-Node-List and CDS-Edge-List are connected) 

Output: true or false  

          // true, if the nodes in CDS-Node-List form a connected sub graph of G and every vertex  

                      v∉CDS-Node-List is at least a neighbor of a vertex u∈CDS-Node-List 

          // false, if the nodes in CDS-Node-List do not form a connected sub graph of G and/or 

           there exists at least one vertex v∉CDS-Node-List  that has no neighbor in CDS-Node-List 

Initialization: 
   CDS-Edge-List = Φ 

Begin CDS-Validation 

   for every pair of vertices u, v ∈CDS-Node-List do 

       if there exists an edge (u, v)∈E at time instant t then 

            CDS-Edge-List = CDS-Edge-List U {(u, v)} 

       end if 

   end for 
 

   connectedCDS = Breadth-First-Search(CDS-Node-List, CDS-Edge-List)   

 

   if connectedCDS = true then 

      for every vertex v∉CDS-Node-List do 

          if there exists no edge (u, v)∈E where u∈CDS-Node-List at time instant t then 

               return false 

          end if 

       end for 
 

       return true 

   end if 
    

   return false // if connectedCDS = false 

 

End CDS-Validation 
 

Figure 2: Pseudo Code for the CDS Validation Algorithm 
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4. EXAMPLES FOR MAXD-CDS AND ID-CDS CONSTRUCTION 

We demonstrate the construction of the ID-CDS and MaxD-CDS through examples illustrated 

in Figures 4 and 5 respectively. As indicated in the legend (Figure 3) for these two figures 

wherein each circle indicates a node in the network graph, we represent: (i) a CDS node with a 

thick black-bordered circle that is gray-shaded inside; (ii) a covered node (a non-CDS node that 

is a neighbor of at least one CDS node) with a thick gray-bordered circle that has black-dots 

inside; (iii) a non-covered node (a node that is neither a CDS node nor a covered node) with a 

black thin circle with no shades or dots inside. In Figure 4 (illustrating the construction of the 

ID-CDS), the integer values inside each circle represents the node ID; in Figure 5 (illustrating 

the construction of the MaxD-CDS), the integer values outside of each circle represents the 

number of uncovered neighbors for the corresponding node. Both Figures 4 and 5 comprise of 

16 nodes. The ID-CDS is constructed in 7 iterations and consists of 7 nodes and 8 edges; the 

MaxD-CDS is constructed in 5 iterations and also consists of 5 nodes and 5 edges. 
 

 
Figure 3: Legend for Figures 4 and 5 

    

    4.1: Initial Network Graph                4.2: Iteration # 1                       4.3: Iteration # 2 

        

           4.4: Iteration # 6                         4.5: Iteration # 7                    4.6: ID-CDS Sub Graph 

                              Figure 4: Example to Illustrate the Construction of an ID-CDS 

     

    5.1: Initial Network Graph                 5.2: Iteration # 1                          5.3: Iteration # 2 
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            5.4: Iteration # 4                        5.5: Iteration # 5                5.6: MaxD-CDS Sub Graph                          

Figure 5: Example to Illustrate the Construction of a Max. Density-based CDS (MaxD-CDS) 

 

5. EXAMPLES FOR MINV-CDS AND NSI-CDS CONSTRUCTION 

5.1 Example to Construct the Minimum-Velocity-based CDS (MinV-CDS) 

We demonstrate the construction of the MinV-CDS through an example of a 24-node network 

illustrated in Figure 6 wherein each circle indicates a node. We represent: (i) a CDS node with a 

bold circle; (ii) a covered node (a non-CDS node that is a neighbor of at least one CDS node) 

with a shaded circle; (iii) a non-covered node (a node that is neither a CDS node nor a covered 

node) with a black thin circle that is neither shaded nor made bold. The integer values outside 

each circle represent the node ID; the integer values inside of each circle represent the number 

of uncovered neighbors for the corresponding node; the real-number inside the circle represents 

the node velocity (in m/s). As observed in Figure 6, the MinV-CDS is constructed in 13 

iterations and consists of 14 nodes and 16 edges.  

 

 
 

          6.1: Initial Network                    6.2: Iteration # 1                      6.3: Iteration # 2 

 

 
 

            6.4: Iteration # 3                  6.5: Final MinV-CDS         6.6: Final MinV-CDS Edges                                                             

                                                    (at the end of Iteration # 13)                      
 

Figure 6: Example to Illustrate the Construction of the Min. Velocity-based CDS (MinV-CDS) 
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5.2 Example to Construct the Node Stability Index-based CDS (NSI-CDS) 

We demonstrate the construction of the NSI-CDS through an example of a 24-node network 

illustrated in Figure 7 wherein each circle indicates a node. We represent: (i) a CDS node with a 

bold circle; (ii) a covered node (a non-CDS node that is a neighbor of at least one CDS node) 

with a shaded circle; (iii) a non-covered node (a node that is neither a CDS node nor a covered 

node) with a black thin circle that is neither shaded nor made bold. The integer values outside 

each circle represent the node ID; the real number on an edge represents the LET of the edge 

and the real number inside a circle represents the sum of the LETs of the edges incident on the 

node. As observed in Figure 7, the NSI-CDS is constructed in 10 iterations and consists of 10 

nodes and 10 edges. On the NSI-CDS graph, the CDS edges (edges between two CDS nodes) 

are shown in bold thick lines; the edges between a CDS node and a non-CDS node are shown as 

regular lines.  

 

 
 

          7.1: Initial Network                    7.2: Iteration # 1                      7.3: Iteration # 2 

 

 
 

             7.4: Iteration # 3                     7.5: Final NSI-CDS            7.6: Final NSI-CDS Edges 

                                                     (at the end of Iteration # 10)               

Figure 7: Example to Construct the Node Stability Index-based CDS (NSI-CDS) 
 
Compared to the MaxD-CDS (Figure 6) obtained on a 24-node network graph of the same 

topology, we observe the NSI-CDS to incur relatively fewer CDS nodes and CDS edges. This 

could be mainly attributed to the fact that the inclusion of a node into the NSI-CDS is decided 

by both the number of uncovered neighbors of the node as well as the LETs of the links to these 

uncovered neighbors. Nodes that have a larger number of uncovered neighbors are more likely 

to have a larger NSI value (the sum of the LETs of the links with these uncovered neighbors) 

and hence have greater chances for inclusion into the NSI-CDS. This characteristic of the NSI-

CDS enables it to comprise of relatively fewer nodes as well as exist for a longer time.  

Comparing Figures 4, 5, 6 and 7, the fraction of the total nodes in the network that become part 

of the CDS (in increasing order) is 5/16 (for MaxD-CDS), 10/24 (for NSI-CDS), 7/16 (for ID-

CDS) and 14/24 (for MinV-CDS). 
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6. SIMULATIONS 

We used our own discrete-event simulator (developed in Java) that has also been successfully 

used in recent studies (e.g. [9][10][11][12]). We implemented all the four CDS algorithms 

(MaxD-CDS, ID-CDS, MinV-CDS and NSI-CDS) in the simulator.  

 

6.1 Network Density 

The dimensions of the network are 1000m x 1000m. Each node operates with a transmission 

range of 250m. The network density is measured as the ratio N*πR
2/A, where N is the number of 

nodes in the network, R is the transmission range of a node and A is the network area. We vary 

the network density by conducting simulations with 50 nodes (low density, corresponding to 

approximately 10 neighbors per node) and 100 nodes (high density, corresponding to 

approximately 20 neighbors per node).  

 

6.2 Node Mobility Model 

The well-known Random Waypoint model [18] is used as the mobility model for our 

simulations. With this model, each node moves independently, from one location to another 

randomly chosen location (within the network area) with a velocity uniform-randomly chosen 

from the range [0,…, vmax]. After reaching the targeted destination location, the node continues 

to move to another randomly chosen location with a different randomly chosen velocity from 

the same range. We simulated three levels of node mobility by varying the vmax value – low (vmax 

= 5 m/s), moderate (vmax = 25 m/s) and high (vmax = 50 m/s).  

 

6.3 Simulation Strategy 

The following simulation strategy is adopted for each of the four CDS algorithms: For every 

combination of network density (50 and 100 nodes) and node mobility (vmax = 5, 25 and 50 m/s), 

we generate the mobility trace files for the nodes over a simulation time of 1000 seconds. We 

sample (take snapshots) the network topology for every 0.25 seconds. We construct the network 

graphs assuming a unit-disk graph model [13], according to which there exists a link between 

any two nodes in the network, if and only if the Euclidean distance between the two nodes is 

within the transmission range of 250m. If a CDS does not exist at a particular time instant, we 

run the appropriate CDS algorithm and tend to use the newly determined CDS as long as its 

exists (see Section 3 for the algorithm to check the existence of a CDS at any particular time 

instant). We repeat the above procedure for the entire simulation time of 1000 seconds. 

To measure the hop count per path, we use a list 15 source-destination (s-d) pairs and for each s-

d pair, we run the Breadth First Search (BFS) algorithm on a CDS-induced graph (i.e., the graph 

comprising of all the nodes in the network; there can be edges only between two CDS nodes and 

a CDS node to a non-CDS node) generated from the network snapshot for the particular time 

instant. The source/destination roles could be assigned to any node (CDS node or non-CDS 

node) in the network. A multi-hop s-d path comprises of more than one hop wherein the 

intermediate nodes can be only CDS nodes. Paths between two non-CDS nodes are always 

multi-hop in nature, even if the two non-CDS nodes are neighbors of each other. However, if 

two CDS nodes or a CDS node and a non-CDS node are neighbors of each other, they can 

communicate directly. 

 

6.4 Performance Metrics 

The following performance metrics were measured in the simulations. Each metric value 

represented in Figures 8 through 12 represent average of values obtained for the CDS 

algorithms when simulated with 5 mobility trace files generated for every combination of 

network density and node mobility.  
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• CDS Node Size: The time-averaged value for the number of constituent nodes of the 

connected dominating sets used across the entire simulation time period. For example, if we 

had used a sequence of three connected dominating sets of size 20, 18 and 25 nodes, 

existing for 10, 15 and 5 seconds respectively, then the time-averaged value for the CDS 

Node Size is (20*10+18*15+25*5)/(10+15+5) = 19.83 and not 21 (the arithmetic average of 

20, 18 and 25). 

• CDS Edge Size: The time-averaged value for the number of edges between the CDS nodes, 

considered for each of the connected dominating sets used across the entire simulation time. 

• CDS Lifetime: The average of the duration of existence of a CDS across the entire 

simulation time period. The larger the CDS lifetime, the more stable it is. 

• Hop Count per Path: The time-averaged value for the number of hops between source-

destination (s-d) pairs (15 s-d pairs were considered) on paths determined on the CDS-

induced network topologies determined for every time instant across the entire simulation 

time. 

• CDS Node Size – Lifetime Tradeoff Ratio: A measure of the tradeoff between the two 

metrics – CDS Node Size and CDS Lifetime. We desire a smaller value for the CDS Node 

Size and a larger value for the CDS Lifetime. Hence, the smaller the ratio, we attribute the 

CDS to have effectively balanced both these metrics, without losing out significantly on 

either of them.  

 

6.5 CDS Node Size 

The MaxD-CDS and the MinV-CDS incur the lowest and largest values for the CDS Node Size. 

The only objective of the MaxD-CDS algorithm is to minimize the number of nodes 

constituting the CDS and it perfectly achieves this (the tradeoff being a significantly lower CDS 

lifetime, as discussed in Sections 6.7 and 6.8). The MinV-CDS and the ID-CDS algorithms have 

no way of controlling the number of nodes becoming part of the CDS. However, the ID-CDS 

does not incur a significantly larger CDS node size and achieves about the same CDS node size 

incurred by the NSI-CDS algorithm. The NSI-CDS is grouped under the category of stability-

based algorithm because it is primarily designed to increase the lifetime of the CDS and it 

reasonably achieves that without substantially losing out on the CDS Node Size. On the other 

hand, the ID-CDS does not exist for a longer time and has to be frequently reconfigured. Since 

it does not incur significantly larger CDS node size and has a CDS Node Size – Tradeoff ratio 

(see Section 6.8) close to that of the MaxD-CDS, we group the ID-CDS under minimum node 

size-based CDS algorithms. While the ID-CDS and NSI-CDS require about 40-75% more CDS 

nodes (constituent nodes of the CDS) than the MaxD-CDS to cover the rest of the network 

nodes; the Node Size of MinV-CDS is 2.5 times or more than that of the MaxD-CDS. The 

MinV-CDS algorithm primarily prefers to include the slow moving nodes to be part of the CDS 

and its only secondary criteria is that the CDS-Select-node has to have at least one uncovered 

neighbor node. With such a design strategy, it is almost impossible to control the Node Size of a 

MinV-CDS. The NSI-CDS manages to have a controlled node size because the NSI of a node is 

defined as the sum of the predicted LETs of the links with the neighbor nodes. Nodes with more 

neighbors are more likely to have a larger NSI value and hence are likely to be included to the 

NSI-CDS; thus, in turn reducing the CDS Node Size.  

For a given network density, the CDS Node Size incurred by the non-velocity-based algorithms 

(i.e., all the three algorithms other than the MinV-CDS) is not much sensitive to the node 

mobility. However, for MinV-CDS, we observe the Node Size for a MinV-CDS to increase with 

increase in node mobility, especially for networks of high density (100 nodes). For a given level 

of node mobility, the MaxD-CDS incurs a very minimal increase (at most 10%) in the CDS 

Node Size as we double the number of nodes in the network. The ID-CDS and NSI-CDS incur a 

moderate increase (15-25%) in the Node Size as we double the network density. The MinV-

CDS incurs the most significant increase (20-35%) in the Node Size as we increase the number 
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of nodes from 50 to 100: this could be attributed to the primary focus of the MinV-CDS 

algorithm being to include slow moving nodes into the CDS as long as they can cover at least 

one uncovered neighbor node. 

 

   

             8.1: vmax = 5 m/s                       8.2: vmax = 25 m/s                     8.3: vmax = 50 m/s 

Figure 8: Average CDS Node Size 

 

6.6 CDS Edge Size 

By virtue of incurring a lower CDS Node Size, the MaxD-CDS also incurs a lower CDS Edge 

Size and the other three CDS algorithms are also ranked similar to their ranking observed for 

CDS Node Size. With the distance between the MaxD-CDS nodes being close to 80% or more 

of the transmission range at the time of CDS construction, the MaxD-CDS incurs relatively 

fewer edges and the number of MaxD-CDS edges and MaxD-CDS nodes are close enough to 

each other. In other words, the MaxD-CDS appears more like a tree; thus, the failure of even 

one or a couple of edges could easily disconnect the MaxD-CDS. 

 

   

              9.1: vmax = 5 m/s                     9.2: vmax = 25 m/s                       9.3: vmax = 50 m/s 

Figure 9: Average CDS Edge Size 

 

As we include more nodes into the CDS, the number of edges between the constituent nodes of 

the CDS increases almost exponentially. While the ID-CDS and NSI-CDS incur an edge size 

that is within a factor of 2-4 to that of the MaxD-CDS, the MinV-CDS incurs an Edge Size that 

is 15-25 times more than that incurred with the MaxD-CDS. The percentage difference in the 

Edge Size for the NSI-CDS and ID-CDS for low-density networks is within 25%. The presence 

of more edges between the CDS nodes has its own advantage and disadvantage: the advantage 

is that the CDS is more stable and does not get disconnected with a failure of one or more 

edges; the disadvantage is that broadcasting through the CDS nodes and edges introduces 

significant redundancy and control overhead. If one could incorporate a controlled broadcasting 

by selectively using only certain CDS edges; the rest of the CDS edges could be merely used as 

backup and be used for transmission and reception only when required to restore connectivity.  

 

6.7 CDS Lifetime 

The MaxD-CDS and MinV-CDS incur respectively the lowest and largest values for the CDS 

Lifetime. We observe the ID-CDS to yield 100-200% longer lifetime than the MaxD-CDS and 

the NSI-CDS has in turn been observed to last 100-200% longer than the ID-CDS; in other 

words, the lifetime of the NSI-CDS is about 200-400% longer than that of the MaxD-CDS. We 

observe the lifetime of the MinV-CDS to be in turn 200-400% longer than that of the NSI-CDS. 

Overall, with a mesh of edges, the ID-CDS and the stability-driven CDS (especially the MinV-

CDS) last significantly longer than that of the MaxD-CDS. The MaxD-CDS gets disconnected 
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with any occasional failure of the edges. With the distance between the MaxD-CDS nodes being 

close to 80% or more of the transmission range at the time of CDS construction, the MaxD-CDS 

edges are highly susceptible to failure (i.e., the end nodes of the edge could move out of the 

transmission range of each other) at any time in the near future. The presence of multiple nodes 

and edges as part of the CDS contributes significantly to the lifetime of the MinV-CDS. Also, 

since the end nodes of the MinV-CDS edges are chosen to be moving with a lower velocity, 

these edges last for a relatively longer time compared to that of the fragile edges of the MaxD-

CDS. 

 

   

            10.1: vmax = 5 m/s                    10.2: vmax = 25 m/s                    10.3: vmax = 50 m/s 

Figure 10: Average CDS Lifetime 

For a fixed maximum node velocity, the lifetime of the MaxD-CDS decreases with increase in 

network density; whereas, the lifetime of the MinV-CDS increases with increase in network 

density. As the MaxD-CDS aims to cover all the nodes in the network (50 nodes or 100 nodes) 

with the fewest possible nodes as part of the CDS, the MaxD-CDS suffers relatively more 

disconnections in networks of higher density (wherein the MaxD-CDS Node Size increases by 

only at most 10% compared to low-density networks). On the other hand, the MinV-CDS 

accommodates more slow moving nodes that are available in high-density networks (i.e., incurs 

a 20-35% increase in the MinV-CDS Node Size) and is able to last relatively much longer 

compared to its duration of existence in low-density networks. The lifetime of the ID-CDS and 

NSI-CDS appears to remain the same or only marginally varies (i.e., a slight increase or 

decrease) with changes in the network density.  

6.8 Hop Count per Path 

We observe the hop count of the paths on the CDS-induced graphs of 50 and 100 nodes to be 

close to 3.0 or slightly above. The ID-CDS and the MinV-CDS respectively incur the largest 

and lowest values for the hop count per path. The relatively lower hop count per path when 

using the MinV-CDS can be attributed to the presence of a larger number of constituent nodes 

and edges as part of the CDS. As a result, it is possible to determine the s-d path with a hop 

count closer to that of the minimum hop count for the source-destination pairs. On the other 

hand, with a limited number of edges on the CDS-induced graphs, the ID-CDS and also the 

MaxD-CDS sustain a relatively larger hop count per path. However, the difference in the 

magnitude of the hop counts per path is within 15%. Nevertheless, paths with lower hop count 

are usually preferred for delay-sensitive applications as well as when operating the network with 

energy-constrained nodes. The more the intermediate nodes on a path, the more the energy 

consumed across the network as well as the delay suffered by the packets sent on the multi-hop 

paths. In this context, the MinV-CDS paths (that also exist longer due to the longer lifetime of 

the MinV-CDS) are more preferable over the other connected dominating sets. 
 

   

             11.1: vmax = 5 m/s                    11.2: vmax = 25 m/s                11.3: vmax = 50 m/s 

Figure 11: Average Hop Count per Path 
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In addition to the drawbacks of longer delay and larger network-wide energy consumption, 

multi-hop paths with a larger hop count on CDS-induced graphs involving a fewer candidate 

intermediate nodes can be unfair to these CDS nodes. Nodes that are part of these connected 

dominating sets could be relatively heavily used compared to the non-CDS nodes. This could 

lead to premature failure of critical nodes, especially those located in the center of the network, 

resulting in loss of network connectivity, especially in low-density networks. On the other hand, 

when several CDS nodes are available to serve as the intermediate nodes on multi-hop paths, we 

could fairly distribute the routing load across several nodes; this could in turn enhance the 

fairness of node usage as well as help to incur a relatively lower end-to-end delay per data 

packet due to the reduced forwarding load at these nodes. 

 

6.9 CDS Node Size – Lifetime Tradeoff Ratio 

As we observe the stability-driven connected dominating sets (MinV-CDS and NSI-CDS) to 

sustain a significantly longer lifetime (compared to the MaxD-CDS and ID-CDS) at the expense 

of a larger CDS Node Size, we evaluate the tradeoff between the CDS Node Size and CDS 

Lifetime by calculating the ratio of these two metrics (Node Size/Lifetime) for the four 

connected dominating sets. Since we prefer to have a lower CDS Node Size and a larger CDS 

Lifetime, connected dominating sets that incur a lower value for the Node Size/Lifetime ratio 

can be attributed to effectively balance the two metrics.  

 

   

             12.1: vmax = 5 m/s                    12.2: vmax = 25 m/s                   12.3: vmax = 50 m/s 

Figure 12: CDS Node Size – Lifetime Tradeoff Ratio 

 

Incidentally, as observed in Figure 12, the MinV-CDS is observed to have the lowest value for 

this tradeoff ratio. The MinV-CDS sustains a lifetime that is 7-15 times more than the lifetime 

of the MaxD-CDS, especially in high-density networks and the above said gain in the lifetime is 

incurred with a Node Size that is at most 2.5 times more than that of the MaxD-CDS. However, 

such a large number of nodes and the resulting edges may not be preferable from the point of 

view of the control overhead incurred for any broadcast communication on the CDS-induced 

graph. In this context, the NSI-CDS can be preferred for stable communication with only a very 

moderately large control overhead. The NSI-CDS has a tradeoff ratio that is very much 

comparable to that of the MinV-CDS. The lifetime of NSI-CDS is 2-4 times more than the 

lifetime of the MaxD-CDS and the Node Size is at most 40-75% more than that of the MaxD-

CDS. The hop counts per path determined for the NSI-CDS (at most 5% larger than that of the 

hop counts per path using MinV-CDS) are also typically lower than that of the hop counts per 

path determined using the MaxD-CDS and ID-CDS.  

 

7. CONCLUSIONS AND FUTURE WORK 

We evaluated the performance of two representatives from each of the two categories of 

minimum-node size driven and stability-driven connected dominating sets (CDS) for MANETs. 

The minimum velocity-based MinV-CDS has been observed to yield the largest lifetime, the 

lowest hop count per path as well as the lowest CDS Node Size/Lifetime tradeoff ratio. The 

minimum-node size based MaxD-CDS and ID-CDS are quite unstable (especially the MaxD-

CDS) as well as incur a larger hop count per path. However, if the control overhead incurred in 

broadcasting through a CDS with a relatively larger number of nodes and edges is a concern, the 
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Node Stability Index based CDS (NSI-CDS) can be considered the best choice: the NSI-CDS 

sustains a significantly lower tradeoff ratio and lower hop count per path (comparable to that of 

the MinV-CDS) and at the same time does not incur a significantly larger Node Size. This way, 

the NSI-CDS is also the most preferred candidate from the points of view of optimal energy 

consumption, delay per path, bandwidth and fairness of node usage.  

In addition to the detailed simulation-based evaluation of the four CDS algorithms (Maximum 

density-based MaxD-CDS, Node ID-based ID-CDS, Minimum velocity-based MinV-CDS and 

the Node Stability Index-based NSI-CDS), we present a generic algorithm (in the first half of 

the paper) that can be used to effectively implement each of these four CDS algorithms by 

appropriately managing the Priority-Queue (according to the criteria used by the individual 

algorithms) to store the candidate covered nodes that can be chosen for inclusion to the CDS. 

This way, the above four connected dominating sets can be determined with virtually the same 

time complexity.  

As part of future work, we will attempt to study the four CDS algorithms with respect to 

mobility models other than the Random Waypoint model as well as study the applicability of 

the connected dominating sets for multicast communication. We will also study the energy 

consumption and fairness of node usage (measured through the node lifetime) with respect to 

routing (unicast and multicast) using the CDS-induced graphs vis-à-vis the unicast and multicast 

routing protocols proposed for MANETs. 
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