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ABSTRACT 

Spectrum congestion is a major concern in both military and commercial wireless networks. To support 

growing demand for ubiquitous spectrum usage, Cognitive Radio is a new paradigm in wireless 

communication that can be used to exploit unused part of the spectrum by dynamically adjusting its 

operating parameters. While cognitive radio technology is a promising solution to the spectral congestion 

problem, efficient methods for detecting white spaces in wideband radio spectrum remain a challenge. 

Conventional methods of detection are forced to use the high sampling rate requirement of Nyquist 

criterion. In this paper, the feasibility and efficacy of using compressive sensing (CS) algorithms in 

conjunction with Haar wavelet for identifying spectrum holes in the wideband spectrum is explored. 

Compressive sensing is an emerging theory that shows that it’s possible to achieve good reconstruction, 

at sampling rates lower than that specified by Nyquist. CS approach is robust in AWGN and fading 

channel. 
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1. INTRODUCTION 

Wireless spectrum is in scarcity but recent research identified that there exists low 

spectrum utilization over wide frequency ranges including licensed spectrum bands.   To utilize 

the spectrum more efficiently, spectrum sensing for underutilized bands are gaining momentum 

currently. The key motivation for this work is to detect the underutilized spectrum or spectrum 

holes efficiently and dynamically reuse the holes for the cognitive radio (CR) network 

application. Cognitive Radio is a single or network nodes that can sense and detect 

changes in the environment to operate in the unused spectrum to create faster, cheaper, 

scalable and robust multimedia wireless communications. Cognitive radio, a software 

defined intelligent radio system is in the heart of opportunistic wireless communication where 

the system employs spectrum sensing mechanism and utilize the spectrum hole for opportunistic 

communications without interfering with the primary user’s communications. Open spectrum 

sensing for the cognitive radio (CR) network faces considerable technical challenges. One of the 

key challenges for CR network is the spectrum sensing. 

Dynamic access of wideband spectrum requires fast and accurate sensing of used and unused 

frequency band. In cognitive radio (CR) networks where dynamic utilization of available 

spectrum is implemented, unlicensed CR users constantly search for free/unoccupied frequency 

band. These frequency band that are unoccupied by communication systems holding the license 

of the said spectrum, are opportunistically used for transmission by the CRs. The FCC recently 

on November 14, 2008, released its second report and memorandum of opinion and order, 

which is commonly referred to as white spaces decision [1]. The rule governs the operation of 
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non-broadcast devices in the TV broadcast band. By so doing, this rule is expected to lead to 

significant benefits for both businesses and consumers by promoting more efficient and 

effective use of the available analog TV spectrum. This ruling will further bring to forefront the 

idea of dynamic spectrum access. The foremost task towards achieving the ruling is sensing and 

identification of unused holes in the spectrum.   

Transmitter detection and interference-based detection [2] are the two broad categories for 

frequency spectrum ‘holes’ detection methods. Transmitter detection method includes matched 

filter detection [3], energy detection [4,5], cyclostationary feature detection [6] and wavelet 

detection [7]. Matched filter detection approach is a coherent detector, it is optimal in stationary 

Gaussian noise, and achieves high gain in less time. Its drawback lies in that apriori information 

(such as modulation type and order, pulse shape, etc) about the signal being detected is required. 

In a situation whereby apriori information about the signal is not known, the energy detector 

method is highly useful as long as noise power is known.  The method’s susceptibility to noise 

power uncertainty, poor performance under low SNR conditions and inability to detect signal 

types are among its shortcomings.  

Wavelet detection makes use of the multiresolution analysis mechanism of wavelet transform. 

An input signal is decomposed into different frequency components, and the resolution of each 

component is matched to its scales. Wavelet can be very useful for wideband channel signal 

detection; it offers a flexible detection capability as opposed to the conventional use of multiple 

narrowband bandpass filters [8]. One major disadvantage of using wavelet techniques for 

spectrum sensing is that a high sampling rate is often required in practice for large bandwidth 

characterization [9]. The cyclostationarity feature detection method is robust against noise; but, 

it is computationally intensive and requires long time.  

While cognitive radio technology is a promising solution to the spectral congestion 

problem, efficient methods for detecting the white spaces or spectral holes in wideband radio 

spectrum remain a challenge. Conventional methods of detection are forced to use the high 

sampling rate requirement of Nyquist criterion. Moreover, timing requirements limit the number 

of samples that can be taken from the composite signals. In this paper, the feasibility and 

efficacy of using compressive sensing (CS) algorithms in conjunction with Haar wavelet for 

identifying spectrum holes in the wideband spectrum is explored. One major problem with 

wideband spectrum sensing is the high cost of current analog-to-digital hardware technology 

required for data acquisition based on Nyquist criteria specification at such high frequency. In 

contrast with the above mentioned strategies for spectrum sensing, Compressive sensing has the 

potential of achieving frequency spectrum sensing with fewer number of samples with different 

channel conditions without a priori information. The effects of additive and multiplicative noise, 

fading distributions, sample size, and CS reconstruction algorithms are investigated.  
 

 The CS approach proposed in this work enables a simple cognitive radio receiver 

implementation for wideband spectrum sensing by considerably reducing the number of 

samples required for power spectral density reconstruction.  It has been demonstrated via 

simulation that the CS approach is also robust in the presence of additive white Gaussian 

channel and multiplicative noise (Rayleigh and Ricean multipath fading channels). The effects 

of fade distributions and the sample size on CS reconstruction algorithms were also 

investigated. 

2. COMPRESSIVE SENSING AND PROBLEM STATEMENT 

2.1. Compressive Sensing  

Nyquist theory defined the required sampling rate for effective reconstruction of signals to be at 

least twice the maximum bandwidth or frequency component of the signal. For signals in 

broadband communication ranges, existing hardware limitation makes it difficult or impossible 
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to achieve Nyquist rate in circuitry. The RF signal acquisition cost based on the currently 

available analog-to-digital hardware technology is very high. In addition to the condition 

specified by Nyquist criteria, dynamically changing spectrum needs to be monitored frequently; 

however because of the large bandwidth, only a limited number of measurements can be taken.  

This condition hinders the ability to carry out good signal reconstruction since samples cannot 

be taken at the rate specified by Nyquist. Another major problem is that wireless fading often 

affects adequate spectrum detection mechanism. If adequate and proper detection of occupied 

bandwidth is not achieved, this may lead to a situation whereby the cognitive radio transmit 

over a channel that is occupied by an active user, which will mostly result in unwanted 

interference.  

Recent research results in the area of compressive sampling or compressed sensing have shown 

that it is possible to reconstruct a signal with far fewer measurements than the traditional 

Nyquist criteria specified, as long as the signal is sparse (or nearly sparse) in some basis or 

frame [10]-[11]. According to CS theories, a vector of discrete-time signal x is K -sparse in 

some basis matrix Ψ, i.e.,   

x a= Ψ                              (1) 

where a is an N by1 vector and has only K non-zero elements and (N − K) zero elements. Ψ is a 

N by N matrix. x is compressible if a has just a few large coefficients and many small 

coefficients [11]. d=K /N is defined as the sparsity of  x . We can reconstruct this signal 

successfully with high probability from L measurements, where L depends on reconstruction 

algorithms and usually L<< N. One key requirement of this theory is that these measurements 

should be sparse or compressible in some basis. Although the measurement process may be 

performed independent of signal type, reconstruction algorithms typically require a priori 

information or assumptions in order to select an optimal or near optimal reconstruction basis.   

The reconstruction can be performed using a variety of basis functions, frames, or dictionaries, 

including Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), Discrete Wavelet 

Transform (DWT), curvelets, etc.  Wavelet transform has been proven to perform well for 

various applications such as in signal detection [12]. A good CS signal reconstruction depends 

on the sparseness or compressibility of the signal, the choice of reconstruction algorithm as well 

as the basis function. Due to low percentage of spectrum occupancy by active radios, the 

wireless signals in open-spectrum network are typically sparse in the frequency domain. Hence, 

the idea of CS signal reconstruction can be used to detect occupied spectral bands as illustrated 

in [13]-[14].  

The unique feature of compressive sensing based spectrum detection where few samples at sub-

Nyquist rate is required in order to detect holes in the spectrum has increased interest in this 

research area. In [15], the author looked into ways of optimizing the sparsifying based in order 

to improve the spectrum sensing efficiency. Also S Hong [16] demonstrated how utilizing a 

Bayesian Compressive Sensing framework in spectrum sensing can result into significantly less 

computational complexity. Our goal in this paper is to show the efficacy of the CS based 

spectrum sensing technique using different reconstruction algorithm in diverse multipath fading 

environment. 

 

2.2. Reconstruction Algorithm 

One of the factors that determine the accuracy of the CS signal reconstruction is the 

algorithm. Orthogonal Matching Pursuit (OMP), Basis Pursuit (BP), Tree Orthogonal Matching 

Pursuit (TOMP), Stepwise Orthogonal Matching Pursuit (STOMP), Gradient Projection ), and a 

row action method using only vector arithmetic are among the several algorithms that has been 

proposed for solving the l1 minimization problem.  The approaches vary in their speed, ability to 

handle large data sets, and accuracy under various conditions. The choice of basis function for 
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projecting the signal also determines the accuracy of the reconstructed signal. Brief but detailed 

explanations of the reconstruction algorithms used for this paper is given below: 

   A compressed sensing solver that seeks to compute the minimum ℓ0 norm solution is the 

Orthogonal Matching Pursuit (OMP) algorithm. This algorithm attempts to determine which 

columns of the pseudo random matrix Φ are most correlated to the measurement matrix y. For 

example, when the signal is reconstructed through orthogonal matching pursuit (OMP) 

algorithm, L is approximately 2Klog(N) achieve a reasonable reconstruction quality. Consider a 

general linear measurement process that computes L inner products between x and a collection 

of vectors {Φj} j= 1 as in y = (x, Φj ). Arrange the measurement yj in a L x 1 vector   

y = [y1,y2,………., yL]
T
 and the measurement vector Φ

T
, as rows in a L x N matrix Φ. Then , by 

substituting Ψ from (1), y can be written as 

 

y x a aθ= Φ = ΦΨ =             (2) 

 where θ=ΦΨa is a L by N projection matrix.  

 

Basis Pursuit is a convex relaxation that offers another approach to sparse approximation. The 

fundamental idea is that the number of terms in a representation can be approximated by the 

absolute sum of the coefficients. This absolute sum is a convex function, and so it can be 

minimized in polynomial time. Given an input signal s, the BP problem is 

 

{ }
m in

b
b

ω
ωω ∈Ω∑                              (3) 

     

subject to b sω ωω
ϕ

∈Ω
=∑

                                (4) 

where bω is a collection of complex coefficients. One hopes that the nonzero coefficients in the 

solution of the BP problem will identify the atoms in the optimal representation of the input 

signal and their coefficients.  

   LASSO (Least Absolute Shrinkage and Selection Operator) is derivatives of LARS (Least 

Angle Regression) minimum l1 norm reconstruction algorithm. This greedy algorithm take 

advantage of geometric correlation between the targeted and the coefficients most correlated 

with the measured response. LASSO algorithms take advantage of quadratic programming 

concepts because they produce a weighted minimum l1 and l2 norm solution.  

 

2.3. Problem Statement 

Assuming that a cognitive radio receiver receives a signal occupying N consecutive spectrum 

band with frequency boundaries located at f0 < f1 <. . . . fn. The frequency response of the 

received signal can be categorized based on the level of the power spectral density of the 

received signal r(t) and is illustrated in Fig. 1. If the PSD level is high, medium or low; the 

spectrum can be considered as black, grey or white. Whereby white hole and sometimes gray 

spaces can be opportunistically used by the CR for transmission, while the black hole are not to 

be used in order to avoid interferences.  

In a wideband frequency spectrum situation, following Nyquist sampling criteria, very large 

samples will be required to effectively recover signal r(t). The goal of each Cognitive radio is to 

effectively sense, classify and estimate the frequency spectrum of signal r(t). Our focus is to be 

able to sense and classify (identify occupied frequency bands) the signal r(t) under different 

channel conditions (noiseless, additive and multiplicative noise) as well as using different CS 

reconstruction algorithm.  
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Figure 1. PSD of a wideband spectrum 

In order to classify and estimate the frequency spectrum, we look at the power spectral density 

as the original signal, and then try to use CS based reconstruction algorithm to reconstruct the 

frequency spectrum provided it was under sampled. Samples required for spectrum 

reconstruction in a wideband frequency signal would have been difficult to implement, however 

using the theory of compressed sensing, since the PSD is sparse in nature, it is possible to detect 

the holes in the spectrum by reconstructing the PSD with fewer samples. It is also worth 

mentioning that since the original signal is the PSD of the wideband frequency spectrum, Haar 

wavelet happens to be the best sparsifying basis for reconstruction in compressive sensing.The 

efficacy of compressed sensing scheme in detecting holes in the spectrum is investigated, 

without noise and in the presence of noise (both multiplicative and additive).  

2.4. Multipath Fading Channel 

A principal feature of a cognitive radio (CR) is a reliable spectrum sensing technique which 

enables the CR to detect white spaces in the frequency band. This allows opportunistic access of 

the unlicensed (secondary) users to these unoccupied spaces without causing interference to 

licensed (primary) users. In many scenarios the CR may operate in a multipath fading 

environment where spectrum sensing must deal with the fading effects of the unknown primary 

PSD signal. It important to study the effects of multipath fading on the performance of 

Compressive Sensing (CS) based spectrum sensing algorithms.  

The detection performance of a CR network system is critically affected by the multi-path 

characteristic of the environment. In a high speed wideband CR network, multi-path fading is 

one of the most serious transmission difficulties. However, there are also long term fluctuations 

in the characteristics of the wireless channel depending on the actual position of the Cognitive 

Radio and the mobile station, that is, in urban areas the signal is affected by multi-path 

propagation. Theorical results show that the channel capacity in a multi-path fading 

environment is always lower than that in a Gaussian noise environment. In a wideband 

frequency communication channel that has  fading characteristics, it is very important to know 

what the degradations are in channel capacity due to multipath fading, and also to what degree 

the diversity schemes can bring the channel capacity up or down. The previous chapter centered 

on the effect of additive noise to CS based spectrum detection. This chapter is centered on 

invetigating the robustness of CS algorithms in spectrum sensing in the presence of additive and 

multiplicative noise. 

The channel amplitude in a Rayleigh fading environment is always lower than that of a 

Gaussian noise environment. The fading channels are modeled as frequency non-selective slow 

Rayleigh and Rice fading channels corrupted by AWGN. Rayleigh and Ricean fading channels 

are useful models of real-world phenomena in wireless communications. These phenomena 
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include multipath scattering effects, time dispersion, and Doppler shifts that arise from relative 

motion between the transmitter and receiver. The transmission path between a transmitter and 

receiver can vary from a simple line-of-sight (LOS) path to a non-line-of-sight (NLOS) path, 

which is a path that is severely obstructed by buildings, mountains, and foliage. Furthermore, 

when a CR moves in space, the speed of motion impacts how rapidly the signal level fades.  

Two widely used models for fading channels are the Rayleigh fading channel and the Ricean 

fading channel, where the Rayleigh fading channel is actually a special case of the Ricean 

fading channel. The Rayleigh model is used when there is NLOS between transmitter and 

receiver, and all of the received signal power is due to multipath. The Ricean model is used 

when there is a LOS between transmitter and receiver, but a substantial portion of the received 

signal power is also due to multipath. When there is LOS between transmitter and receiver and 

virtually none of the received signal power is due to multi-path, the non-fading channel model is 

used. 

Rayleigh fading is a type ofsmall-scale fading.  If the multipath reflective paths are large in 

number and are all NLOS, the envelop of the received signal can be statistcally expressed by 

using a Rayleigh fading distribution. The Rayleigh fading distribution has a probability density 

function given by                    

0
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Where r is the envelop amplitude of the received signal, and σ
2
 is the time-average power of the 

multipath signal. 

The Rice fading distribution has a probability density function given by 

2 2

02 2 2
exp , 0 0

( ) 2

0 0

r r A Ar
I r and A

p r

r

σ σ σ

  +  
− ≥ ≥    =    


<

      (6) 

Where r is the envelope and   σ
2
 is average of the Rice fading signal. A is the peak amplitude of 

the dominant signal, and I0(.) is the modified Bessel function of zero order, which is given by 

[17] 
2
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 Note that the Rice fading distribution in equation (6) presents two extreme cases: 

1. If the dominant signal A = 0, p(r) become the Rayleigh fading distribution in equation 

(5). 

2. If the dominant signal A is large, p(r) becomes a Gaussian distribution. 

 The Rice fading distribution is usually expressed in terms of a parameter K that is 

defined as the ratio between the deterministic signal power and the variance of the 

multipath. The parameter is given by  
2

22

A
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σ
=                                                                (8) 

Or in decibels 
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Where k (or K) is known as the Ricean factor that completely specifies the Ricean fading 

distribution. Note that the Ricean fading distribution becomes the Rayleigh fading distribution 

as ,  

2.5 Doppler Spread 

Due to the relative motion of transmitter and receiver in the CR networks, the Doppler 

shift is of great practical importance to take account of.  The effect of the Doppler shift on the 

CR network receiver is prevalent. In a dense CR network the phenomenon of Doppler spread in 

which the spectrum of the transmitted signal is not displaced in the frequency by Doppler shift, 

but is actually spread out [18].  

Doppler spread, Ds is a measure of spectral broadening, fd caused by the time rate of 

change of the wideband wireless channel. The Doppler spread is defined as the range of 

frequencies over the received Doppler power spectrum S(v). The components range from (fc – 

fd) to (fc + fd), where fc is the transmitted pure sinusoidal tone of frequency and fd is the Doppler 

shift. 

The S(v) at the CR receiver is then given by 

                 (10)   

Where v is the Doppler frequency shift and  is the maximum Doppler shift given by 

( )max || || max | cos |m d

v v
f f θ

λ λ

 
= = = 

 
                                 (11) 

Where  can be either positive or negative depending on the arrival angle θ.  V is the 

relative velocity, and λ is the signal wavelength. Thus, in this case, the Doppler spread is 

obtained by 

s mD f=                          (12) 

The knowledge of the Doppler power spectrum in equation 10 allows the determination 

of how much spectral broadening is imposed on the signal as a function of the change in the 

multipath channel state. 

3. NUMERICAL RESULTS 

In our simulations, based on the theory of compressive sensing, we considered a wideband of 

interest with the signal of interest being the frequency domain PSD of the spectrum. We 

employed the idea of CS signal reconstruction in order to detect occupied/unoccupied spectral 

bands. We decided to solve the problem using OMP, BP and LASSO reconstruction algorithm. 

These are three of several CS-based algorithms. Our simulations revealed that reconstruction of 

the signal is possible using any of these three algorithms.  

The choice of how many measurements are required to accurately reconstruct the PSD of a 

wideband spectrum in noiseless environment is of topmost importance. A major implementation 

challenge of conventional spectral estimation methods lies in the very high sampling rates 

required, which have to operate at or above the Nyquist rate. Compressive Sensing is a method 

for acquisition of sparse signals at rates far lower than the Nyquist sampling rate. With CS the 

original PSD signal can be reconstructed using far fewer measurements than the Nyquist 

criterion. This theory helps to offer the much needed benefits for reduced transmission 

bandwidth as a result of compression ratio achievable. 

Wideband PSD in frequency the domain are sparse and this is an advantage that allows 

the use of measurement matrix to sense the PSD and reconstruct the spectrum of the PSD by a 
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CS reconstruction algorithm. Therefore, if the number of measurements is L << N, a high 

sampling rate is not required. Sub-Nyquist rate can be used to get a number of measurements.  
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Figure 2: Recovered PSD of Different Sample Sizes Using FFT. 
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Figure 3: Recovered PSD of different sample sizes using Haar Wavelet. 

The reconstructed PSD is taken from an original signal length of 4096. How much sample size 

is required to reconstruct the PSD is investigated, to show the advantage of CS over traditional 

methods of sparse signals. The simulation is done using Fast Fourier Transform (FFT) and Haar 

wavelet basis as a sparsifying basis. Orthogonal Matching Pursuit reconstruction algorithm is 

used to reconstruct the PSD. Using FFT significantly a high sample size above 15000 is needed 

to be able to reconstruct the PSD through the CS algorithm. The result obtained for FFT as a 

basis function is shown in Fig. 2. On the other hand as shown in Fig. 3, using Haar wavelength 

256 of sample sizes is enough to reconstruct the PSD. Power Spectral Density of different 
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spectrum occupancy is used to show the performance of the two bases considered. Only two of 

such results were presented in this paper. 

We also try to consider the effect of different reconstruction algorithms on the performance of 

the detection. First we consider a noiseless condition and investigated reconstruction at different 

sampling rates using the earlier mentioned reconstruction algorithms. At a sampling ratio of 

70%, the result obtained from the three reconstruction algorithms that were considered is shown 

in Fig. 4.  
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Figure 4: Noiseless Signal frequency response at a compression ratio of 70% 

We also investigated the effect of an AWGN channel condition on the detection through CS 

reconstruction and the result obtained for a situation whereby the signal to noise ratio is 10dB is 

shown in Fig. 5.  
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Figure 5: Noisy Signal (10 dB) frequency response at a compression ratio of 70% 
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Figure 6: Root Mean Square error using BP algorithm and different no. of samples for AWGN 

channel 

Fig. 6 shows the characterization result obtained using Basis Pursuit algorithm under different 

signal to noise ratio for an additive white Gaussian noise channel condition. The result was 

obtained after over 100 iterations. It is a plot of the root mean square error between the 

reconstructed spectrum and the original spectrum at different noise level for different sampling 

rates.  

We also decided to investigate the behavior of the system in the presence of multiplicative 

noise. We carried out a test by passing the signal through Rayleigh fading channel in addition to 

additive white Gaussian noise channel. The reconstructed signal is as shown in Fig. 7 and the 

characterization result of the root mean square error, using Basis Pursuit algorithm at different 

sampling rates was shown in Fig. 8.  
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Figure 7: Noisy Signal (Rayleigh fading channel + Gaussian) frequency response at a 

compression ratio of 70%.  
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Figure 8: Root Mean Square error using BP algorithm and different no. of samples for Rayleigh 

Fading + AWGN channel 

The behavior of the system under Rice fading channel in combination with AWGN channel was 

also investigated. Similar results were obtained and they are shown in Fig. 9.  
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Figure 9: Noisy Signal (Rice fading channel + Gaussian) frequency response at a compression 

ratio of 70%. 
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The different algorithms that were considered all performed averagely well in comparison to 

each other, they are all capable of effectively detecting the occupied bandwidth through CS 

based signal reconstruction method. 
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Figure 10: Frequency Reponses PSD Passed Through Fading Channel at 150 Max. Doppler 

Shift  
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Figure 11: Frequency Response of PSD Passed Through Fading Channel at 100 Max. Doppler 

Shift 
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Figure 12 Frequency Response of PSD Passed Through Fading Channel at 10 Max. Doppler 

Shift 
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Figure 13: Root Mean Square Error of CS Algorithms in (fading + AWGN) Environment at 150 

Max. Doppler Shift 
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Figure 14 Root Mean Square Error of CS Algorithms in (fading + AWGN) Environment at 100 

Max. Doppler Shift 
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Figure 15 Root Mean Square Error of CS Algorithms in (Fading + AWGN) Environment at 10 

Max. Doppler Shift 

Figures 10, 11, and 12 consider the effect of Doppler shift on the system performance at 

different maximum Doppler shifts. As the Doppler shift increases, the channel varies more 

rapidly, and thus the system performance becomes worse. One can also see that in the low SNR 

region, the system performance changes only slightly when using the sinc interpolator which is 

not related to channel state parameters. The results obtained shows that though LASSO perform 

worst at 150 and 100 Maximum Doppler shift, the result at 10 maximum Doppler shift for all 

the three algorithms is relatively close. 
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However, in the high SNR regime (SNR > 10 dB) as shown in Figures 13, 14, and 15, 

the performance changes significantly. The reason for this is for small SNR values, the AWGN 

is the dominant factor affecting the accuracy of channel estimation. However, in the high SNR 

regime, mismatch of the sinc interpolator with the channel variations become the dominant 

cause limiting the system performance.  

3. CONCLUSIONS 

It has been shown that it is possible to determine the available spectrum bandwidth 

using compressive sampling based signal reconstruction methods. This approach is robust 

whether in an additive white Gaussian noisy channel or a fading (Rayleigh or Rice) channel. 

Although significantly error occurs in the magnitude of the characterization based on fading 

channel plus AWGN in comparison to just AWGN channel, this is not necessarily a problem 

since the goal is to determine the occupied/unoccupied frequency band in the spectrum. Edge 

detection algorithms can be employed in determining the unoccupied frequency bands. The 

effects of Doppler shift on the performance of the CS algorithms at different maximum Doppler 

shift are considered. It was found that as the Doppler shift increases, the channel fading 

characteristic varies more rapidly, and thus system performance becomes worse. Also, the three 

algorithms used performed well at 10 maximum Doppler shift with OMP having the best 

performance. 

The results obtained in this paper show that the proposed CS reconstruction based 

dynamic spectrum detection method promises to alleviate the current spectrum scarcity problem 

by using CR networks to opportunistically re-use spectrum holes and  enable a lower 

complexity cognitive radio receiver implementation for wideband spectrum sensing by 

considerably reducing the number of samples required for power spectral density reconstruction. 
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