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ABSTRACT 

Multicore computer systems are adopting more cores to meet the increasing performance requirement. 

Network topology to make communication in such a multicore/manycore system (like Intel 80-Core 

Research Chip and IBM Roadrunner) is extremely important to achieve high performance by supplying 

low energy. Designing and analysing such a gigantic system is very complicated and it costs up to 

millions of dollars. Performance modelling technique is attracting researches from many organizations 

and different disciplines to conduct research on multicore/manycorenetworked systems in an inexpensive 

way. However, there is no standard in performance modelling of such complex systems. This paper 

proposes a methodology of developing conceptual models of multicore/manycorenetworked systems for 

performance analysis. Important features of this methodology include data acquisition to improve 

accuracy by capturing the important details about the system under consideration, system-to-model 

abstraction to make the modelling manageable without eliminating any characteristics of the target 

system, and model validation to make sure that the model meets the requirements with an optimal choice 

of the hardware and software. Networked systems with up to 64 cores are modelled; according to the 

experimental results, the proposed performance modelling methodology is very promising. 
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1. INTRODUCTION 

According to power-aware multicore/manycore computer architecture design trends, it is 
expected that in the near future, a high performance computing system should consist thousands 
to millions of processing cores, where each core should be capable of executing multiple 
threads. As a result, challenges should appear from the facts that multi-level caches, local and 
remote main memory, and intra-/inter-nodal communication networks should offer an increased 
and/or unpredictable memory access time within computing systems. Discovering and 
exploiting parallelism within codes and overlapping different types of operations should be 
another great challenge [1]-[3]. Network topology used to support core-to-core data 
communication in multicore architecture is very important to meet the required performance 
goal [4]-[6]. To conduct research on such a complex and expensive system, conceptual 
modelling may be the best feasible option for many researchers [7]-[12]. However, conceptual 
modelling is relatively a new field, it has its own issues, and there is no standard. In this work, 
some of the key issues regarding modelling multicore/manycore networked systems are 
addressed and then a new methodology is presented explaining how to develop conceptual 
models of such complex systems.  

Multicore computer/network architecture supporting real-time multimedia applications deals 
with timing constraints and usually interacts with the environment rather than the human 
operator. Because timeliness and reliability are so important in their behaviour, real-time 
multimedia systems are often distributed among multiple program units (a.k.a., tasks) running 
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simultaneously to perform required functions. Concurrent execution of tasks on a single 
processor, in many respects including energy and thermal constraints, is inadequate for 
achieving the required level of performance or required level of reliability. Therefore, the tasks 
are moved to different interconnected processors, making a real-time system parallel and/or 
distributed. If the communication time between processing units is negligible with respect to the 
processing time, then the system is referred as parallel; otherwise it is referred as distributed. 
Because of their high performance and reliability, the popularity and demand of multicore 
systems (supporting parallel and/or distributed processing) are increasing in both the desktop 
and the embedded markets [2]-[5].  

Chip vendors are developing high-performance teraflop and petaflop computing systems with 
hundreds and thousands of processing cores. For example, Intel 80-Core Research Chip is a 
teraflop processor. IBM Blue Gene/L has 128K+ cores and Roadrunner has 130K+ cores. Intel 
80-Core Research Chip is not publicly available IBM Gene/L and Roadrunner cost millions of 
dollars [13]. Modelling technique provides an inexpensive way to conduct research on such 
complex and expensive systems.  The multicore/manycore systemswe model in this work 
haveup to 64 cores and two levels of caches. Using representative synthetic workload, we 
explore the impact of the number of cores and various cache parameters on performance and 
total power consumption.  

This paper is organized as follows. In Section 2, some related articles are reviewed. Section 3 
discusses various modelling issues related to multicore/manycore networked systems. A 
methodology for modelling multicore/manycore systems is presented in Section 4 and the 
methodology is evaluated in Section 5. Some important simulation results are discussed in 
Section 6. Finally, this work is concluded in Section 7. 

2. SURVEY 

In this section, some published articles we find relevant to performance modelling of 
multicore/manycore systems are discussed. 

Various issues and theories behind modelling and simulation simple computer systems are 
discussed in [14][15]. Today’s computers are much more complicated as they are 
multicore/manycore systems and they require fast, safe, and reliable network support. 

In [16], suggestionsare made to develop a procedure for problem formulation and indicators to 
verify the formulated problem. In [17], an attempt is made to automate simplification. It should 
be noted that formulation and automation may degrade the accuracy of the results.Six important 
principles of modelling are discussed in [18] that cover simplicity versus complexity and serve 
as the rough guide to modelling. Simplicity in modelling may be dangerous, especially in 
medical fields as suggested in [19]. Therefore, advanced techniques in modelling 
multicore/manycore networked systems for analysis is a great challenge. 

In [20], a scheme to model and validate high-performance embedded systems is proposed.This 
approach depends on the repetitive model of computation used to express the parallelism of 
such systems. In [21], relational coordination is suggested to mediate the association between 
the high-performance work practices and outcomes. In [22],an interpreter based modelling fora 
high-performance system is proposed. Modelling techniques presented in [20]-[22] are not 
suitable for multicore/manycore performance analysis. 

Multicore/manycore systems help achieve aggressive performance/power targets; however, 
designing the interconnect framework and cache memory sub-system are challenging.Some of 
those issues are addressed in [1]-[6]. However, they do not suggest any modelling schemes.  
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Various conceptual modelling issues are addressed in [7]-[10]. As mentioned in [7], conceptual 
modelling is an important part of a simulation study; however, it is not understood very well. 
According to [9], there are no standard for decomposing the representation of the simulation 
subject into the entities. In [10], an approach of semiautomatic generation of conceptual models 
from text is presented.These articles discuss various conceptual modelling issues and try to 
formulate methodologies for concurrent computing systems. However, none of these techniques 
is suitable for performance modelling of multicore/manycore networked systems, simply 
because of the complexity of such a networked system.  

In this paper, we propose a methodology to model complex multicore/manycore networked 
systems for performance analysis. Important features of this methodology include data 
acquisition to improve accuracy, system-to-model abstraction, and model validation to make 
sure that the model meets the requirements. We model multicore systems with up to 64 cores 
and present some important experimental results. 

3. PERFORMANCE MODELLING 

Conceptual modellingis considered as one of the vague areas of simulation study [7]. In the 
following subsections, some important modelling issues are addressed. 

3.1. Model Requirements 

A simple model has both merits and demerits. A simple model is always expected mainly 
because it is easy and fast to develop, takes less input and runs fast, and is better understood 
[11]. However, a simple model may be dangerous as it requires more extensive assumptions to 
simplify the target system [19]. Especially for high performance multicore computer systems 
where both the hardware and the software are very complex; the models are expected to be 
complex as well. Different researchers identify various performance criteria for a good model 
[7]. It is suggested that a conceptual model should meet the following requirements: simplicity, 
usability, accuracy, reliability, affordability, and sustainability. 

Simplicity: Even though simple models may be dangerous, simplicity is emphasized for various 
reasons. One reason is the fact that conceptual modelling is the first step for most cases and it is 
far way from the actual implementation (i.e., real danger). If the conceptual model indicates any 
problem, then it can be easily fixed. Spending a lot of efforts to come up with a complex model 
may not be always profitable. 

Usability: Usability is very important, because a model should be used by people at various 
levels inside and/or outside of the organization (from testers to developers to managers to 
outside clients). Conceptual models should be easy to use/reuse so that the actual system 
becomes easy to understand by all users.  

Accuracy: No wonder, accuracy is an important requirement. Various levels of accuracy during 
the design cycle are suggested. At the early stage, a reasonable amount of accuracy can be 
traded-off with the faster development and execution times. However, at a later stage, accuracy 
becomes more crucial and should not be sacrificed. 

Reliability: In modelling (and simulation), reliability is an important factor. Reliability is 
considered to be very critical, as accuracy may be sacrificed at the early stage. At an early stage, 
if the conceptual model indicates that the target solution is profitable; at a later stage, the refined 
model should indicate more accurately how profitable it may be. 

Affordability: The solution of the conceptual modelling should be affordable so that more 
organizations can take advantage of it.  
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Sustainability: The solution of the conceptual modelling should be sustainable so that it remains 
diverse and productive over time. 

3.2. Model Development 

Conceptual modelling is more like an art than a science [15]. However, model development is 
guided by modelling principles and modelling simplification (as explained below). 

Modelling principles: Modellers have proposed various principles. Some important modelling 
principles suggested by [14] are, 

• Model simple – think complicated 

• Be parsimonious – start small and add 

• Apply similarities – do not redo what (or if similar thing) has already has been done.  

Modelling simplification: Simplification means removing details from a model while 
maintaining a sufficient level of accuracy. Various simplification methods are proposed. Some 
simplification methods including dropping unimportant components, using random variables to 
depict parts of the model, and grouping components of the model are discussed in [18]. Some 
improved methods are discussed in [17] which are based on the initial methods developed in 
[18]. 

To some extent, conceptual modelling is involved with traditional modelling and simulation 
discipline. Usually, simulation models are often developed for a single purpose. Once a model is 
accepted, it is quite common and desirable to reuse the application of the model to several other 
areas. But, this may not be a straight-forward evolution because a model designed and 
developed to evaluate one performance measure of a system may not be well-suited for others. 
However, (unlike simulation model) conceptual model defined for a system can be easily reused 
to other systems. Conceptual modelling has gained a lot of interest in recent years and 
simulation modellers are particularly interested in understanding the processes involved in 
arriving at a conceptual model. Needless to mention at this point that conceptual modelling is 
essential in the process of developing and implementing simulation models for next-generation 
computing systems [7]. 

3.3. Model Validation 

Validation is important to improve the credibility of the model and to increase the correctness of 
the simulation. Validation is also important to check if the conceptual model is sufficiently 
accurate for its intended purpose. However, defining methods for performing the validation is 
difficult. A detailed questionnaire for validating the conceptual model is provided in [16]. Using 
the conceptual model description (project specification) as a means of validation of a model is 
suggested by [7]. It is recommended that validation process include inputs, outputs, and the 
requirements. 

3.4. Other Challenges 

As mentioned earlier, modern high performance computing systems are expected to have lots of 
cores. Multicore architecture brings some important blessings like improved performance / 
power ratio. However, multicore systems introduce several design and implementation 
challenges like complexity. To understand the complexity of a high performance computing 
system, let’s briefly discuss IBM’s Roadrunner supercomputer. Roadrunner is the first hybrid 
supercomputer, where general purpose processors are coupled with specialized co-processors. 
Roadrunner has more than 130,000 cores (13,824 Opteron cores + 116,640 Cell cores = 130,464 
cores). Roadrunner delivers a peak performance of 1.7 petaflops per second (average 
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performance of 1.026 petaflops per second) and costs US$133 million. Roadrunner has a total 
of 6,912 Opteron processors (6,480 for computation and 432 for operation) and a total of 12,960 
PowerXCell processors (12,960 PPE cores and 103,680 SPE cores) [13]. For conceptual 
modelling of multicore systems following crucial challenges should be addressed.  

Inter-core communication: Most researchers use 2D mesh network for many-core architecture 
mainly because of its simplicity. However, there are other alternatives that should be tested.  

Defining the architecture: The target architecture should be (re-)defined for modelling. The 
actual (existing or future) system may have millions of cores and other components. However, 
only some selected portions and/or some simplified portions should be sufficient to represent 
the system. 

Cache-memory organization: Usually each core of a multicore system has private level-1 cache 
(CL1) and the processor may have shared and/or distributed level-2 and higher level caches 
(like CL2 and CL3). Cache memory is power-hungry and it increases unpredictability and data 
inconsistency. So, cache memory should be modelled carefully. 

Power and heat management: Power consumption and heat dissipation are very crucial for 
multicore high performance systems where cores are built very close to each other.  

Other important issues include multicore programmability and system cost. 

4. PROPOSED PERFORMANCE MODELLING METHODOLOGY 

As modern multicore/manycore networked computing systems are becoming more complex and 
expensive, developing conceptual models for such complex systems is in great need to analyse 
them. In this section, a methodology for conceptual modelling is described which is fast, easy, 
flexible, and suitable to develop the first stage (in the design cycle) conceptual model of 
multicore high performance systems. This methodology thinks complicated, but models simple; 
starts small, but adds more stuff as needed. Three major steps of this conceptual modelling 
methodology, data/knowledge acquisition, (system-to-) model abstraction, and model 
validation, are shown in Figure 1. 

 

Figure 1.Major steps of the proposed performance modelling methodology 
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4.1. Data Acquisition 

Data acquisition is the first step of this methodology. Two important tasks of this step are 
collecting information and developing data-sheet based on the requirements.  

Collecting information: Collecting useful information about a high performance complex 
system is not easy. For future computing systems, sometime the end user’s requirements are not 
even clear. For existing products, the owner company usually does not release important 
information. 

Developing data-sheet: Once necessary (may not be sufficient) information is available, data-
sheet is created applying the rules and requirements. This data-sheet should be updated as more 
information and/or requirements are available. 

4.2. Model Abstraction 

Model abstraction is the key step of this methodology. Two important tasks of this step are 
abstracting data-sheet and developing model.  

Abstracting data-sheet: The most recent data-sheet is used for high level abstraction. While 
abstracting for the conceptual model, irrelevant and/or less important details are excluded. 
However, a sufficient level of accuracy is maintained.  

Developing model: The abstracted data-sheet is mapped into a simulation model. Selecting 
and/or developing simulation tools become very important at this point. Also, the quality of the 
workload used in the simulation is important for the accuracy and completeness of the 
simulation results. The workload defines all possible scenarios and environmental conditions 
that the system-under-study will be operating under. 

4.3. Model Validation 

Validation of the model is the last and another important step of this methodology. Validation 
results primarily indicate if the model meets the requirements with an optimal choice (of the 
hardware and software used and/or proposed). If validation result is not satisfactory, above steps 
may be repeated as needed. Validation results can be used to determine if more 
functions/components need to be included in the conceptual model. 

5. EVALUATION 

In this work, we model and simulate multicore/manycore systems with up to 64 processing 
cores using the proposed modelling methodology and investigate the impact of cache 
parameters on performance and total power consumption. Discussed below are the assumptions, 
workloads, and input/out parameters related to the simulation program. 

5.1. Assumptions 

The following assumptions are made to model the target architecture and to run the simulation 
program. 

a) Simulated multicore systems are considered as homogeneous. Two-level cache 
memory hierarchy is simulated, where level-1 caches are private to the cores 
and level-2 cache and main memory are shared. 

b) Bus based network topology is used in this work. 
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c) Cores are grouped into clusters. Clusters are connected via shared level-2 
cache. Inside each cluster, snoopy protocol is used for communication.  

d) Tasks are evenly distributed among the cores. 

e) Delay associate with the bus that connects CL1s and CL2 is 2/100th of the 
delay associated with the main memory. 

f) Write-back policy (for write misses) and random cache replacement policy (for 
cache block replacements) are used. 

5.2. Simulated Multicore Networked Architecture 

In this work, we presentamodellingtechnique to simulate multicore/manycorenetworked systems 
to assess the performance and total power consumption. We simulate multicore architecture that 
includes up to 64 processing cores, level-1, and level-2 caches. Figure 2 shows such a system 
with 16 cores. As illustrated here, level-1caches (CL1s) are private to the cores and level-2 
cache (CL2) is shared by the cores. We abstract the target architecture by considering all 
important components and ignoring non-relevant minor details.Cores are grouped together in a 
cluster and each cluster is connected to CL2 via a switch. CL2 has 4 communication ports 
(interfaces).Inside the cluster, snooping protocol is used. Shared CL2 is used for cluster-to-
cluster communications.  

 

Figure 2.Simulated multicore networked architecture with sixteen cores 

This networked architecture is good for small number of cores (suitable for most contemporary 
PCs and embedded systems).As the number of cores increases, the switches can be replaced by 
routers to accommodate more clusters. If the number of cores increases even more, various 
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5.3. Workloads 

In this work, we use synthetic workload to run our simulation program. For the distribution of 
data requirements for various instructions, we assume that each processing core processes 
60.0% of its instructions without requesting any external data. The remaining 40% requests for 
data are satisfied from the caches. Based on thesuggestion made in[23], we assume 95% level-1 
cache hit. So, 38% (95% of 40.0) has a match in the level-1 cache and responds to the core with 
the data. Similarly, assuming 95% level-2 cache hit, 1.9% (95% of 2.0) has a match in the level-
2 cache and responds to the core with the data while 0.1% has to take the additional steps to the 
main memory (MM) to get the data. We define task time be the time that one task needs to be 
processed. The processing time used for each architectural component is shown in Table 1. 

Table 1.  Processing time distribution. 

Parameters Values 

Task (completion) time 10.0 time units 
Core time Task time * 0.6 

Main memory time Task time * 0.4 

Bus time Memory time * 0.02 

Level-1 cache time Memory time * 0.04 

Level-2 cache time Memory time * 0.08 

Others Negligible 

 

5.4. Input and Output Parameters 

Important input parameters used in the simulation include the number of cores, cache size, line 
size, and associativity level [see Table 2]. We keep CL2 cache sizes fixed at 4MB. As suggested 
in[12], we lock 25% of the cache size to see the impact of cache locking. Every time, we run our 
simulation program for 10000 units of simulation time.  

Table 2.System input parameters. 

Input Parameters Values 

Number of cores 4, 8, 16, 32, or 64 
CL1 size (KB) 16, 32, 64, 128, 256 

CL2 size (MB) 4 (fixed) 
CL1/CL2 Line size (Byte) 4, 8, 16, 32, or 32 

CL1/CL2 Associativity level (n-way) 1, 2, 4, 8, or 16 

Cache locking at level-1 25% of the cache size 
Cache locking at level-2 25% of the cache size 

 

We obtain mean delay per task and total power consumption by the system as the output 
parameters. Delay is the time between the start of execution of a task and the end [3][23]. 

5.5. Simulation Tool 

VisualSim simulation package is used to model the selected architecture, run the simulation 
program, and collect results [23].  

6. RESULTS AND DISCUSSION 

In this work, we introduce a conceptual modelling technique to simulate multicore/manycore 
networked systems for performance analysis.We select a system that may have up to 64 cores; 
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each core has its own private level-1 cache; and level-2 cache is shared by all cores. Cores are 
grouped together as a cluster. Using the proposed conceptual modelling technique, we explore 
the impact of cache parameters on performance and total power consumption. We obtain results 
by varying the number of cores, line size, and associativity level. We present some important 
simulation results in the following subsections. 

6.1. Number of Cores 

We first simulate a system with 4 cores. Then we add more cores and simulate systems with 8, 
16, 32, and 64 cores, respectively. We apply cache locking only at CL1 and only at CL2 (not at 
CL1 and CL2 at the same time). The average delay per task for no locking, level-1 locking, and 
level-2 locking are shown in Figure 3. Experimental results show that the mean delay per task 
decreases with the addition of cores for all three cases. From 4 to 16 cores, the decrement in 
mean delay per task is very sharp. Beyond 16 cores, the decrement is not significant.It is also 
observed thatperformance can be improved by applying level-1 and level-2 cache 
locking.Experimental results show that level-2 cache locking reduces the mean delay per task 
better than level-1 cache locking does. 

 

Figure 3.Mean delay per core versus number of cores 

The impact of the number of cores and cache locking on total power consumption is shown in 
Figure 4. Experimental results show that total power consumption increases as more cores are 
added. However, the increment is not significant as the number of cores is higher. It is noted 
that the total power consumption can be reduced by applying level-1 and level-2 cache locking. 
Experimental results show that level-2 cache locking reduces the total power consumption better 
than level-1 cache locking does.  

According to the experimental results, it is observed that cache locking at level-2 outperforms 
cache locking at level-1 (see Figures 3 and 4). This is primarily because of the synthetic 
workload used to run the simulation program. If application size is smaller than CL1 cache size 
(which is the case in this experiment), level-1 cache locking is not very efficient as the entire 
program fits inside CL1. In the case of program or data size smaller that CL1, cache locking at 
level-2 offers better performance/power ratio. 
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Figure 4.  Total power consumptionversus number of cores 

6.2. CL1 Size 

Larger cache size may improve performance by reducing capacity and collision cache misses. 
However, too large a cache size may increase total power consumption but may not decrease 
cache misses. The mean delay per taskversus CL1 size for no cache locking, level-1 cache 
locking, and level-2 cache locking are shown in Figure 5. Experimental results show that 
performance can be improved by increasingCL1 sizefrom 16 KB.The mean delay per task starts 
decreasing sharply with the increase in CL1 size between 16KB and 64KB.Alsoobserved that 
performance can be improved (i.e., mean delay per task can be reduced) using cache locking for 
any CL1 cache size. 

 

Figure 5.Mean delay per core versusCL1 size 

Figure 6 illustrates the total power consumed for various CL1cache sizes. The total power starts 
decreasing sharply with the increase in CL1 size (between 16KB and 64KB) regardless of cache 

150

180

210

240

270

300

4 8 16 32 64

T
o

ta
l 
P

o
w

e
r 

(U
n

it
) 

Number of cores

Total Power Consumption Vs Number of Cores
CL1 = 64KB, CL2 = 4MB

Line size = 16B, Associativity level = 4-way

No Locking L1 Locking L2 Locking

20

30

40

50

60

70

16 32 64 128 256

M
e
a
n

 D
e
la

y
 p

e
r 

T
a
s
k
 (

K
P

C
) 

CL1 Size (KB)

Mean Delay per Task Vs CL1 Size
Cores = 16, CL2 = 4MB

Line size = 16B, Associativity level = 4-way

No Locking L1 Locking L2 Locking



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012 

63 
 

 
 

locking. However for CL1 size beyond 64 KB,the total power consumption starts increasing 
with the increase in CL1 cache size. 

 

Figure 6.  Total power consumptionversusCL1 size 
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line size greater than 32 Bytes, the mean delay per task starts increasing with the increase in line 
size due to cache pollution. It is alsoobserved that performance can be improved (i.e., mean 
delay per task can be reduced) using cache locking for any line size. 
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Figure 8 illustrates the total power consumed for various line sizes. The total power starts 
decreasing sharply with the increase in line size (between 4 Bytes and 16 Bytes) regardless of 
cache locking. Like the mean delay per task, the total power consumption starts increasing with 
the increase in line size due to cache pollution for line size greater than 32 Bytes. 

 

Figure 8.  Total power consumptionversusline size 
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Figure 9.Mean delay per core versusassociativity level 
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Figure 10 shows the impact of various associativity levels and cache locking on total power 
consumption. The total power consumption decreasesas the level of associativity increases. 
However, only from 1-way (direct mapping) to 4-way, the decrement is significant. Again,level-
2 cache locking offers better performance/power ratio than level-1 cache locking does. 

 

Figure 10.Total power consumptionversusassociativity level 

7. CONCLUSIONS 

Network topology and cache memory organization to make better communication in 
multicore/manycore systems is extremely important to achieve high performance/power ratio. 
Manycore systems like IBM Roadrunner have thousands of processing cores and are very 
expensive (cost up to millions of dollars). Conducting research on such a complexand expensive 
system is not possible for most researchers and organizations. Therefore, conceptual modelling 
technique is attracting researches from many institutions to conduct research on 
multicore/manycore networked systems in an inexpensive way.So far different modelling issues 
have been addressed; however, there is no standard in performance modelling of complex 
systems. In this work, we present a methodology for performance modelling for 
multicore/manycore networked systems. Various challenges and rewards of conceptual 
modelling are briefly discussed in this article. The conceptual modelling is very helpful to 
assess the validity of a situation not explicitly tested. It is very effective for future systems 
(simply because they do not exist) and for the multicore high performance systems (because 
they are complicated and expensive). We simulate networked systems up to 64 cores using the 
proposed performance modelling methodology. Each core has its own level-1 private cache. 
Level-2 cache is shared by all cores. Cores are grouped into clusters; clusters are connected via 
shared level-2 cache. Snoopy protocol is used for communication inside each cluster. 

The proposed performance modelling methodologyis fast, simple, flexible, and suitable to 
develop the first stage (in the design cycle)conceptual model of multicore/manycorenetworked 
systems. This methodology models simple, but thinks complicated; it starts with a small model, 
but adds more details as needed. Three important features of the proposed methodology are: 
data acquisition in order to improve accuracy of the system, system-to-model abstraction to 
make the modellingmanageable, and model validation to make sure that the model meets the 
requirements.  
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Using the proposed modelling technique, we model a system with up to 64 cores. Experimental 
results indicate that for the synthetic workload used, mean delay per task decreases and total 
power consumption increases with the addition of cores. However, the decrement in the mean 
delay per task is very significant when compared with the increment in total power 
consumption. From Figures 3 and 4, mean delay per task decreases up to 23% but total power 
consumption increases only up to 6%. Simulation results also show that both level-1 and level-2 
cache locking help reduce the mean delay per task and total power consumption. In this 
experiment, level-2 cache locking outperforms level-1 cache locking. This is because cache 
locking at level-1 is not efficient for this workload as itentirely fits in CL1 cache.We find the 
proposed performance modelling methodology easy and user-friendly. 

We model systems up to 64 cores and simulate using synthetic workload in this work. We plan 
to model systems with thousands cores connected via ring, mesh, and hypercube network 
topologies and simulate them using real-time multimedia workloads in our next endeavour.  
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