
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

DOI : 10.5121/ijcnc.2012.4204 53

PERFORMANCE MODELLING OF MULTICORE AND

MANYCORE NETWORKED SYSTEMS

Abu Asaduzzaman

Dept of Elec Eng and Computer Sci, Wichita State University, Wichita, Kansas, USA
Abu.Asaduzzaman@wichita.edu

ABSTRACT

Multicore computer systems are adopting more cores to meet the increasing performance requirement.

Network topology to make communication in such a multicore/manycore system (like Intel 80-Core

Research Chip and IBM Roadrunner) is extremely important to achieve high performance by supplying

low energy. Designing and analysing such a gigantic system is very complicated and it costs up to

millions of dollars. Performance modelling technique is attracting researches from many organizations

and different disciplines to conduct research on multicore/manycorenetworked systems in an inexpensive

way. However, there is no standard in performance modelling of such complex systems. This paper

proposes a methodology of developing conceptual models of multicore/manycorenetworked systems for

performance analysis. Important features of this methodology include data acquisition to improve

accuracy by capturing the important details about the system under consideration, system-to-model

abstraction to make the modelling manageable without eliminating any characteristics of the target

system, and model validation to make sure that the model meets the requirements with an optimal choice

of the hardware and software. Networked systems with up to 64 cores are modelled; according to the

experimental results, the proposed performance modelling methodology is very promising.

KEYWORDS

Conceptual modelling, multicore/manycore architecture, network topology, networked systems,

performance analysis

1. INTRODUCTION

According to power-aware multicore/manycore computer architecture design trends, it is
expected that in the near future, a high performance computing system should consist thousands
to millions of processing cores, where each core should be capable of executing multiple
threads. As a result, challenges should appear from the facts that multi-level caches, local and
remote main memory, and intra-/inter-nodal communication networks should offer an increased
and/or unpredictable memory access time within computing systems. Discovering and
exploiting parallelism within codes and overlapping different types of operations should be
another great challenge [1]-[3]. Network topology used to support core-to-core data
communication in multicore architecture is very important to meet the required performance
goal [4]-[6]. To conduct research on such a complex and expensive system, conceptual
modelling may be the best feasible option for many researchers [7]-[12]. However, conceptual
modelling is relatively a new field, it has its own issues, and there is no standard. In this work,
some of the key issues regarding modelling multicore/manycore networked systems are
addressed and then a new methodology is presented explaining how to develop conceptual
models of such complex systems.

Multicore computer/network architecture supporting real-time multimedia applications deals
with timing constraints and usually interacts with the environment rather than the human
operator. Because timeliness and reliability are so important in their behaviour, real-time
multimedia systems are often distributed among multiple program units (a.k.a., tasks) running

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

54

simultaneously to perform required functions. Concurrent execution of tasks on a single
processor, in many respects including energy and thermal constraints, is inadequate for
achieving the required level of performance or required level of reliability. Therefore, the tasks
are moved to different interconnected processors, making a real-time system parallel and/or
distributed. If the communication time between processing units is negligible with respect to the
processing time, then the system is referred as parallel; otherwise it is referred as distributed.
Because of their high performance and reliability, the popularity and demand of multicore
systems (supporting parallel and/or distributed processing) are increasing in both the desktop
and the embedded markets [2]-[5].

Chip vendors are developing high-performance teraflop and petaflop computing systems with
hundreds and thousands of processing cores. For example, Intel 80-Core Research Chip is a
teraflop processor. IBM Blue Gene/L has 128K+ cores and Roadrunner has 130K+ cores. Intel
80-Core Research Chip is not publicly available IBM Gene/L and Roadrunner cost millions of
dollars [13]. Modelling technique provides an inexpensive way to conduct research on such
complex and expensive systems. The multicore/manycore systemswe model in this work
haveup to 64 cores and two levels of caches. Using representative synthetic workload, we
explore the impact of the number of cores and various cache parameters on performance and
total power consumption.

This paper is organized as follows. In Section 2, some related articles are reviewed. Section 3
discusses various modelling issues related to multicore/manycore networked systems. A
methodology for modelling multicore/manycore systems is presented in Section 4 and the
methodology is evaluated in Section 5. Some important simulation results are discussed in
Section 6. Finally, this work is concluded in Section 7.

2. SURVEY

In this section, some published articles we find relevant to performance modelling of
multicore/manycore systems are discussed.

Various issues and theories behind modelling and simulation simple computer systems are
discussed in [14][15]. Today’s computers are much more complicated as they are
multicore/manycore systems and they require fast, safe, and reliable network support.

In [16], suggestionsare made to develop a procedure for problem formulation and indicators to
verify the formulated problem. In [17], an attempt is made to automate simplification. It should
be noted that formulation and automation may degrade the accuracy of the results.Six important
principles of modelling are discussed in [18] that cover simplicity versus complexity and serve
as the rough guide to modelling. Simplicity in modelling may be dangerous, especially in
medical fields as suggested in [19]. Therefore, advanced techniques in modelling
multicore/manycore networked systems for analysis is a great challenge.

In [20], a scheme to model and validate high-performance embedded systems is proposed.This
approach depends on the repetitive model of computation used to express the parallelism of
such systems. In [21], relational coordination is suggested to mediate the association between
the high-performance work practices and outcomes. In [22],an interpreter based modelling fora
high-performance system is proposed. Modelling techniques presented in [20]-[22] are not
suitable for multicore/manycore performance analysis.

Multicore/manycore systems help achieve aggressive performance/power targets; however,
designing the interconnect framework and cache memory sub-system are challenging.Some of
those issues are addressed in [1]-[6]. However, they do not suggest any modelling schemes.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

55

Various conceptual modelling issues are addressed in [7]-[10]. As mentioned in [7], conceptual
modelling is an important part of a simulation study; however, it is not understood very well.
According to [9], there are no standard for decomposing the representation of the simulation
subject into the entities. In [10], an approach of semiautomatic generation of conceptual models
from text is presented.These articles discuss various conceptual modelling issues and try to
formulate methodologies for concurrent computing systems. However, none of these techniques
is suitable for performance modelling of multicore/manycore networked systems, simply
because of the complexity of such a networked system.

In this paper, we propose a methodology to model complex multicore/manycore networked
systems for performance analysis. Important features of this methodology include data
acquisition to improve accuracy, system-to-model abstraction, and model validation to make
sure that the model meets the requirements. We model multicore systems with up to 64 cores
and present some important experimental results.

3. PERFORMANCE MODELLING

Conceptual modellingis considered as one of the vague areas of simulation study [7]. In the
following subsections, some important modelling issues are addressed.

3.1. Model Requirements

A simple model has both merits and demerits. A simple model is always expected mainly
because it is easy and fast to develop, takes less input and runs fast, and is better understood
[11]. However, a simple model may be dangerous as it requires more extensive assumptions to
simplify the target system [19]. Especially for high performance multicore computer systems
where both the hardware and the software are very complex; the models are expected to be
complex as well. Different researchers identify various performance criteria for a good model
[7]. It is suggested that a conceptual model should meet the following requirements: simplicity,
usability, accuracy, reliability, affordability, and sustainability.

Simplicity: Even though simple models may be dangerous, simplicity is emphasized for various
reasons. One reason is the fact that conceptual modelling is the first step for most cases and it is
far way from the actual implementation (i.e., real danger). If the conceptual model indicates any
problem, then it can be easily fixed. Spending a lot of efforts to come up with a complex model
may not be always profitable.

Usability: Usability is very important, because a model should be used by people at various
levels inside and/or outside of the organization (from testers to developers to managers to
outside clients). Conceptual models should be easy to use/reuse so that the actual system
becomes easy to understand by all users.

Accuracy: No wonder, accuracy is an important requirement. Various levels of accuracy during
the design cycle are suggested. At the early stage, a reasonable amount of accuracy can be
traded-off with the faster development and execution times. However, at a later stage, accuracy
becomes more crucial and should not be sacrificed.

Reliability: In modelling (and simulation), reliability is an important factor. Reliability is
considered to be very critical, as accuracy may be sacrificed at the early stage. At an early stage,
if the conceptual model indicates that the target solution is profitable; at a later stage, the refined
model should indicate more accurately how profitable it may be.

Affordability: The solution of the conceptual modelling should be affordable so that more
organizations can take advantage of it.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

56

Sustainability: The solution of the conceptual modelling should be sustainable so that it remains
diverse and productive over time.

3.2. Model Development

Conceptual modelling is more like an art than a science [15]. However, model development is
guided by modelling principles and modelling simplification (as explained below).

Modelling principles: Modellers have proposed various principles. Some important modelling
principles suggested by [14] are,

• Model simple – think complicated

• Be parsimonious – start small and add

• Apply similarities – do not redo what (or if similar thing) has already has been done.

Modelling simplification: Simplification means removing details from a model while
maintaining a sufficient level of accuracy. Various simplification methods are proposed. Some
simplification methods including dropping unimportant components, using random variables to
depict parts of the model, and grouping components of the model are discussed in [18]. Some
improved methods are discussed in [17] which are based on the initial methods developed in
[18].

To some extent, conceptual modelling is involved with traditional modelling and simulation
discipline. Usually, simulation models are often developed for a single purpose. Once a model is
accepted, it is quite common and desirable to reuse the application of the model to several other
areas. But, this may not be a straight-forward evolution because a model designed and
developed to evaluate one performance measure of a system may not be well-suited for others.
However, (unlike simulation model) conceptual model defined for a system can be easily reused
to other systems. Conceptual modelling has gained a lot of interest in recent years and
simulation modellers are particularly interested in understanding the processes involved in
arriving at a conceptual model. Needless to mention at this point that conceptual modelling is
essential in the process of developing and implementing simulation models for next-generation
computing systems [7].

3.3. Model Validation

Validation is important to improve the credibility of the model and to increase the correctness of
the simulation. Validation is also important to check if the conceptual model is sufficiently
accurate for its intended purpose. However, defining methods for performing the validation is
difficult. A detailed questionnaire for validating the conceptual model is provided in [16]. Using
the conceptual model description (project specification) as a means of validation of a model is
suggested by [7]. It is recommended that validation process include inputs, outputs, and the
requirements.

3.4. Other Challenges

As mentioned earlier, modern high performance computing systems are expected to have lots of
cores. Multicore architecture brings some important blessings like improved performance /
power ratio. However, multicore systems introduce several design and implementation
challenges like complexity. To understand the complexity of a high performance computing
system, let’s briefly discuss IBM’s Roadrunner supercomputer. Roadrunner is the first hybrid
supercomputer, where general purpose processors are coupled with specialized co-processors.
Roadrunner has more than 130,000 cores (13,824 Opteron cores + 116,640 Cell cores = 130,464
cores). Roadrunner delivers a peak performance of 1.7 petaflops per second (average

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

57

performance of 1.026 petaflops per second) and costs US$133 million. Roadrunner has a total
of 6,912 Opteron processors (6,480 for computation and 432 for operation) and a total of 12,960
PowerXCell processors (12,960 PPE cores and 103,680 SPE cores) [13]. For conceptual
modelling of multicore systems following crucial challenges should be addressed.

Inter-core communication: Most researchers use 2D mesh network for many-core architecture
mainly because of its simplicity. However, there are other alternatives that should be tested.

Defining the architecture: The target architecture should be (re-)defined for modelling. The
actual (existing or future) system may have millions of cores and other components. However,
only some selected portions and/or some simplified portions should be sufficient to represent
the system.

Cache-memory organization: Usually each core of a multicore system has private level-1 cache
(CL1) and the processor may have shared and/or distributed level-2 and higher level caches
(like CL2 and CL3). Cache memory is power-hungry and it increases unpredictability and data
inconsistency. So, cache memory should be modelled carefully.

Power and heat management: Power consumption and heat dissipation are very crucial for
multicore high performance systems where cores are built very close to each other.

Other important issues include multicore programmability and system cost.

4. PROPOSED PERFORMANCE MODELLING METHODOLOGY

As modern multicore/manycore networked computing systems are becoming more complex and
expensive, developing conceptual models for such complex systems is in great need to analyse
them. In this section, a methodology for conceptual modelling is described which is fast, easy,
flexible, and suitable to develop the first stage (in the design cycle) conceptual model of
multicore high performance systems. This methodology thinks complicated, but models simple;
starts small, but adds more stuff as needed. Three major steps of this conceptual modelling
methodology, data/knowledge acquisition, (system-to-) model abstraction, and model
validation, are shown in Figure 1.

Figure 1.Major steps of the proposed performance modelling methodology

Step 2:

Model Abstraction

Step 1:

Data Acquisition

Step 3:

Model Validation

Start

Stop

 No Are results
satisfactory?

Collect information

 Enough

info?

Develop datasheet

No

Abstract datasheet

Develop model

Yes
Yes

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

58

4.1. Data Acquisition

Data acquisition is the first step of this methodology. Two important tasks of this step are
collecting information and developing data-sheet based on the requirements.

Collecting information: Collecting useful information about a high performance complex
system is not easy. For future computing systems, sometime the end user’s requirements are not
even clear. For existing products, the owner company usually does not release important
information.

Developing data-sheet: Once necessary (may not be sufficient) information is available, data-
sheet is created applying the rules and requirements. This data-sheet should be updated as more
information and/or requirements are available.

4.2. Model Abstraction

Model abstraction is the key step of this methodology. Two important tasks of this step are
abstracting data-sheet and developing model.

Abstracting data-sheet: The most recent data-sheet is used for high level abstraction. While
abstracting for the conceptual model, irrelevant and/or less important details are excluded.
However, a sufficient level of accuracy is maintained.

Developing model: The abstracted data-sheet is mapped into a simulation model. Selecting
and/or developing simulation tools become very important at this point. Also, the quality of the
workload used in the simulation is important for the accuracy and completeness of the
simulation results. The workload defines all possible scenarios and environmental conditions
that the system-under-study will be operating under.

4.3. Model Validation

Validation of the model is the last and another important step of this methodology. Validation
results primarily indicate if the model meets the requirements with an optimal choice (of the
hardware and software used and/or proposed). If validation result is not satisfactory, above steps
may be repeated as needed. Validation results can be used to determine if more
functions/components need to be included in the conceptual model.

5. EVALUATION

In this work, we model and simulate multicore/manycore systems with up to 64 processing
cores using the proposed modelling methodology and investigate the impact of cache
parameters on performance and total power consumption. Discussed below are the assumptions,
workloads, and input/out parameters related to the simulation program.

5.1. Assumptions

The following assumptions are made to model the target architecture and to run the simulation
program.

a) Simulated multicore systems are considered as homogeneous. Two-level cache
memory hierarchy is simulated, where level-1 caches are private to the cores
and level-2 cache and main memory are shared.

b) Bus based network topology is used in this work.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

59

c) Cores are grouped into clusters. Clusters are connected via shared level-2
cache. Inside each cluster, snoopy protocol is used for communication.

d) Tasks are evenly distributed among the cores.

e) Delay associate with the bus that connects CL1s and CL2 is 2/100th of the
delay associated with the main memory.

f) Write-back policy (for write misses) and random cache replacement policy (for
cache block replacements) are used.

5.2. Simulated Multicore Networked Architecture

In this work, we presentamodellingtechnique to simulate multicore/manycorenetworked systems
to assess the performance and total power consumption. We simulate multicore architecture that
includes up to 64 processing cores, level-1, and level-2 caches. Figure 2 shows such a system
with 16 cores. As illustrated here, level-1caches (CL1s) are private to the cores and level-2
cache (CL2) is shared by the cores. We abstract the target architecture by considering all
important components and ignoring non-relevant minor details.Cores are grouped together in a
cluster and each cluster is connected to CL2 via a switch. CL2 has 4 communication ports
(interfaces).Inside the cluster, snooping protocol is used. Shared CL2 is used for cluster-to-
cluster communications.

Figure 2.Simulated multicore networked architecture with sixteen cores

This networked architecture is good for small number of cores (suitable for most contemporary
PCs and embedded systems).As the number of cores increases, the switches can be replaced by
routers to accommodate more clusters. If the number of cores increases even more, various
popular network topologies (like ring, mesh, and hypercube) can be used. We plan to explore
some of those network topologies in our next endeavour.

CL1 CL1

Core Core Core Core

CL1 CL1

CL1 CL1

Core Core Core Core

CL1 CL1

Core

Core

Core

Core

CL1 Core

Core

Core

CL1 Core

CL1

CL1

CL1

CL1

CL1

CL1
Main

Memory

CL2

Cluster-2

Cluster-1

Cluster-3

Cluster-4
Switch

Interface

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

60

5.3. Workloads

In this work, we use synthetic workload to run our simulation program. For the distribution of
data requirements for various instructions, we assume that each processing core processes
60.0% of its instructions without requesting any external data. The remaining 40% requests for
data are satisfied from the caches. Based on thesuggestion made in[23], we assume 95% level-1
cache hit. So, 38% (95% of 40.0) has a match in the level-1 cache and responds to the core with
the data. Similarly, assuming 95% level-2 cache hit, 1.9% (95% of 2.0) has a match in the level-
2 cache and responds to the core with the data while 0.1% has to take the additional steps to the
main memory (MM) to get the data. We define task time be the time that one task needs to be
processed. The processing time used for each architectural component is shown in Table 1.

Table 1. Processing time distribution.

Parameters Values

Task (completion) time 10.0 time units
Core time Task time * 0.6

Main memory time Task time * 0.4

Bus time Memory time * 0.02

Level-1 cache time Memory time * 0.04

Level-2 cache time Memory time * 0.08

Others Negligible

5.4. Input and Output Parameters

Important input parameters used in the simulation include the number of cores, cache size, line
size, and associativity level [see Table 2]. We keep CL2 cache sizes fixed at 4MB. As suggested
in[12], we lock 25% of the cache size to see the impact of cache locking. Every time, we run our
simulation program for 10000 units of simulation time.

Table 2.System input parameters.

Input Parameters Values

Number of cores 4, 8, 16, 32, or 64
CL1 size (KB) 16, 32, 64, 128, 256

CL2 size (MB) 4 (fixed)
CL1/CL2 Line size (Byte) 4, 8, 16, 32, or 32

CL1/CL2 Associativity level (n-way) 1, 2, 4, 8, or 16

Cache locking at level-1 25% of the cache size
Cache locking at level-2 25% of the cache size

We obtain mean delay per task and total power consumption by the system as the output
parameters. Delay is the time between the start of execution of a task and the end [3][23].

5.5. Simulation Tool

VisualSim simulation package is used to model the selected architecture, run the simulation
program, and collect results [23].

6. RESULTS AND DISCUSSION

In this work, we introduce a conceptual modelling technique to simulate multicore/manycore
networked systems for performance analysis.We select a system that may have up to 64 cores;

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

61

each core has its own private level-1 cache; and level-2 cache is shared by all cores. Cores are
grouped together as a cluster. Using the proposed conceptual modelling technique, we explore
the impact of cache parameters on performance and total power consumption. We obtain results
by varying the number of cores, line size, and associativity level. We present some important
simulation results in the following subsections.

6.1. Number of Cores

We first simulate a system with 4 cores. Then we add more cores and simulate systems with 8,
16, 32, and 64 cores, respectively. We apply cache locking only at CL1 and only at CL2 (not at
CL1 and CL2 at the same time). The average delay per task for no locking, level-1 locking, and
level-2 locking are shown in Figure 3. Experimental results show that the mean delay per task
decreases with the addition of cores for all three cases. From 4 to 16 cores, the decrement in
mean delay per task is very sharp. Beyond 16 cores, the decrement is not significant.It is also
observed thatperformance can be improved by applying level-1 and level-2 cache
locking.Experimental results show that level-2 cache locking reduces the mean delay per task
better than level-1 cache locking does.

Figure 3.Mean delay per core versus number of cores

The impact of the number of cores and cache locking on total power consumption is shown in
Figure 4. Experimental results show that total power consumption increases as more cores are
added. However, the increment is not significant as the number of cores is higher. It is noted
that the total power consumption can be reduced by applying level-1 and level-2 cache locking.
Experimental results show that level-2 cache locking reduces the total power consumption better
than level-1 cache locking does.

According to the experimental results, it is observed that cache locking at level-2 outperforms
cache locking at level-1 (see Figures 3 and 4). This is primarily because of the synthetic
workload used to run the simulation program. If application size is smaller than CL1 cache size
(which is the case in this experiment), level-1 cache locking is not very efficient as the entire
program fits inside CL1. In the case of program or data size smaller that CL1, cache locking at
level-2 offers better performance/power ratio.

20

30

40

50

60

70

4 8 16 32 64

M
e
a
n

 D
e
la

y
 p

e
r

T
a
s
k
 (

K
P

C
)

Number of cores

Mean Delay per Task Vs Number of Cores
CL1 = 64KB, CL2 = 4MB

Line size = 16B, Associativity level = 4-way

No Locking L1 Locking L2 Locking

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

62

Figure 4. Total power consumptionversus number of cores

6.2. CL1 Size

Larger cache size may improve performance by reducing capacity and collision cache misses.
However, too large a cache size may increase total power consumption but may not decrease
cache misses. The mean delay per taskversus CL1 size for no cache locking, level-1 cache
locking, and level-2 cache locking are shown in Figure 5. Experimental results show that
performance can be improved by increasingCL1 sizefrom 16 KB.The mean delay per task starts
decreasing sharply with the increase in CL1 size between 16KB and 64KB.Alsoobserved that
performance can be improved (i.e., mean delay per task can be reduced) using cache locking for
any CL1 cache size.

Figure 5.Mean delay per core versusCL1 size

Figure 6 illustrates the total power consumed for various CL1cache sizes. The total power starts
decreasing sharply with the increase in CL1 size (between 16KB and 64KB) regardless of cache

150

180

210

240

270

300

4 8 16 32 64

T
o

ta
l
P

o
w

e
r

(U
n

it
)

Number of cores

Total Power Consumption Vs Number of Cores
CL1 = 64KB, CL2 = 4MB

Line size = 16B, Associativity level = 4-way

No Locking L1 Locking L2 Locking

20

30

40

50

60

70

16 32 64 128 256

M
e
a
n

 D
e
la

y
 p

e
r

T
a
s
k
 (

K
P

C
)

CL1 Size (KB)

Mean Delay per Task Vs CL1 Size
Cores = 16, CL2 = 4MB

Line size = 16B, Associativity level = 4-way

No Locking L1 Locking L2 Locking

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

63

locking. However for CL1 size beyond 64 KB,the total power consumption starts increasing
with the increase in CL1 cache size.

Figure 6. Total power consumptionversusCL1 size

6.3. Line Size

Larger line size may improve performance by reducing compulsory cache misses. However, too
large a line size may increase capacity cache misses and that may reduce performance and
increase power requirement. The mean delay per taskversus line size for no cache locking,
level-1 cache locking, and level-2 cache locking are shown in Figure 7. Experimental results
show that performance can be improved by increasingline sizefrom 4 Bytes.The mean delay per
task starts decreasing sharply with the increase in line size between 4 Bytes and 16 Bytes. For
line size greater than 32 Bytes, the mean delay per task starts increasing with the increase in line
size due to cache pollution. It is alsoobserved that performance can be improved (i.e., mean
delay per task can be reduced) using cache locking for any line size.

Figure 7.Mean delay per core versusline size

150

180

210

240

270

300

16 32 64 128 256

T
o

ta
l
P

o
w

e
r

(U
n

it
)

CL1 Size (KB)

Total Power Consumption Vs CL1 Size
Cores = 16, CL2 = 4MB

Line size = 16B, Associativity level = 4-way

No Locking L1 Locking L2 Locking

20

30

40

50

60

70

4 8 16 32 64

M
e
a
n

 D
e
la

y
 p

e
r

T
a
s
k
 (

K
P

C
)

Line Size (Bytes)

Mean Delay per Task Vs Line Size
CL1 = 64KB, CL2 = 4MB

Cores = 16, Associativity level = 4-way

No Locking L1 Locking L2 Locking

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

64

Figure 8 illustrates the total power consumed for various line sizes. The total power starts
decreasing sharply with the increase in line size (between 4 Bytes and 16 Bytes) regardless of
cache locking. Like the mean delay per task, the total power consumption starts increasing with
the increase in line size due to cache pollution for line size greater than 32 Bytes.

Figure 8. Total power consumptionversusline size

6.4. Associativity Level

Finally, we discuss the impact of various associativity levels on performance and total power
consumption. Experimental results show that the mean delay per task can be decreased by
increasingthe level of associativity (see Figure 9). From 1-way (direct mapping) to 4-way, the
mean delay per task decreases sharply. Beyond 4-way, the decrement is not significant. For
different associativity levels, the mean delay per task can be decreased by using cache locking
and level-2 cache locking outperforms level-1 cache locking.

Figure 9.Mean delay per core versusassociativity level

150

180

210

240

270

300

4 8 16 32 64

T
o

ta
l
P

o
w

e
r

(U
n

it
)

Line Size (Bytes)

Total Power Consumption Vs Line Size
CL1 = 64KB, CL2 = 4MB

Cores = 16, Associativity level = 4-way

No Locking L1 Locking L2 Locking

20

30

40

50

60

70

1 2 4 8 16

M
e
a
n

 D
e
la

y
 p

e
r

T
a
s
k
 (

K
P

C
)

Associativity Level (n-way)

Mean Delay per Task Vs Associativity Level
CL1 = 64KB, CL2 = 4MB

Cores = 16, Line size = 16B

No Locking L1 Locking L2 Locking

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

65

Figure 10 shows the impact of various associativity levels and cache locking on total power
consumption. The total power consumption decreasesas the level of associativity increases.
However, only from 1-way (direct mapping) to 4-way, the decrement is significant. Again,level-
2 cache locking offers better performance/power ratio than level-1 cache locking does.

Figure 10.Total power consumptionversusassociativity level

7. CONCLUSIONS

Network topology and cache memory organization to make better communication in
multicore/manycore systems is extremely important to achieve high performance/power ratio.
Manycore systems like IBM Roadrunner have thousands of processing cores and are very
expensive (cost up to millions of dollars). Conducting research on such a complexand expensive
system is not possible for most researchers and organizations. Therefore, conceptual modelling
technique is attracting researches from many institutions to conduct research on
multicore/manycore networked systems in an inexpensive way.So far different modelling issues
have been addressed; however, there is no standard in performance modelling of complex
systems. In this work, we present a methodology for performance modelling for
multicore/manycore networked systems. Various challenges and rewards of conceptual
modelling are briefly discussed in this article. The conceptual modelling is very helpful to
assess the validity of a situation not explicitly tested. It is very effective for future systems
(simply because they do not exist) and for the multicore high performance systems (because
they are complicated and expensive). We simulate networked systems up to 64 cores using the
proposed performance modelling methodology. Each core has its own level-1 private cache.
Level-2 cache is shared by all cores. Cores are grouped into clusters; clusters are connected via
shared level-2 cache. Snoopy protocol is used for communication inside each cluster.

The proposed performance modelling methodologyis fast, simple, flexible, and suitable to
develop the first stage (in the design cycle)conceptual model of multicore/manycorenetworked
systems. This methodology models simple, but thinks complicated; it starts with a small model,
but adds more details as needed. Three important features of the proposed methodology are:
data acquisition in order to improve accuracy of the system, system-to-model abstraction to
make the modellingmanageable, and model validation to make sure that the model meets the
requirements.

150

180

210

240

270

300

1 2 4 8 16

T
o

ta
l
P

o
w

e
r

(U
n

it
)

Associativity Level (n-way)

Power Consumption Vs Associativity Level
CL1 = 64KB, CL2 = 4MB

Cores = 16, Line size = 16B

No Locking L1 Locking L2 Locking

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

66

Using the proposed modelling technique, we model a system with up to 64 cores. Experimental
results indicate that for the synthetic workload used, mean delay per task decreases and total
power consumption increases with the addition of cores. However, the decrement in the mean
delay per task is very significant when compared with the increment in total power
consumption. From Figures 3 and 4, mean delay per task decreases up to 23% but total power
consumption increases only up to 6%. Simulation results also show that both level-1 and level-2
cache locking help reduce the mean delay per task and total power consumption. In this
experiment, level-2 cache locking outperforms level-1 cache locking. This is because cache
locking at level-1 is not efficient for this workload as itentirely fits in CL1 cache.We find the
proposed performance modelling methodology easy and user-friendly.

We model systems up to 64 cores and simulate using synthetic workload in this work. We plan
to model systems with thousands cores connected via ring, mesh, and hypercube network
topologies and simulate them using real-time multimedia workloads in our next endeavour.

REFERENCES

[1] Narayanaswamy, G., Balaji, P., &Feng, W., (2009) "Impact of Network Sharing in Multi-core
Architectures", URL: www.mcs.anl.gov/~balaji/pubs/2008/icccn/icccn08.multicore.pdf

[2] Duranton, M., (2006)“The Challenges for High Performance Embedded Systems”, 9th

EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools (DSD

2006), pp3-7.

[3] Asaduzzaman,A.& Mahgoub, I., (2006)“Cache Modelling and Optimization for Portable
Devices Running MPEG-4 Video Decoder”, Multimedia Tools and Applications (MTAP’06),
pp239-256.

[4] Haritan,E.,Yagi,H., Et al, (2008)“Multicore design is the challenge! What is the solution?”,45th

ACM/IEEE Design Automation Conference Proceedings, pp128-130.

[5] Mittal, M., (2009) "Optimizing Multicore for Networking Applications", URL:
http://www.ecnmag.com/Articles/2009/12/optimizing-multicore/

[6] Grover, S., Dhanotia, A., & Byrd, G.T., (2011) "A Canonical Multicore Architecture for
Network Routers" 2011 Seventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pp134-144.

[7] Robinson, S., (2006)“Conceptual Modelling for Simulation: Issues and Research Requirements”,
Proceedings of the 2006 Winter Simulation Conference.

[8] Borah, J., (2009)“Simulation Conceptual Modelling Study Group Gets Rolling”, URL:
www.sisostds.org

[9] Pace, D.K., (2000)“Ideas about Simulation Conceptual Model Development”, Johns Hopkins

APL Technical Digest (21-3), pp327-336.

[10] Cyre, W.R., (1999)“Conceptual modelling and simulation”, International Conference on

Computer Design (ICCD’99), pp293-296.

[11] Chwif,L.,Barretto,M.R.P., & Paul, R.J., (2000)“On Simulation Model Complexity”, Proceedings

of the 2000 Winter Simulation Conference, IEEE, Piscataway, NJ, pp449-455.

[12] Asaduzzaman,A.& Sibai, F.N., (2010)“Improving Cache Locking Performance of Modern
Embedded Systems via the Addition of a Miss Table at the L2 Cache Level", Journal of Systems

Architecture (JSA).

[13] Wikipedia, (2012) IBM's Roadrunner is the first Petascale computer. URL:
http://en.wikipedia.org/wiki/IBM_Roadrunner

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.2, March 2012

67

[14] Shannon, R.E., (1975)“Systems Simulation: The Art and Science”,Prentice-Hall, Englewood

Cliffs, NJ, ISBN-13: 978-0138818395.

[15] Zeigler, B.P., (1976)“Theory of Modelling and Simulation”, Wiley, New York, NY, ISBN-13:

978-0127784557.

[16] Balci,O.& Nance, R.E., (1985)“Formulated Problem Verification as an Explicit Requirement of
Model Credibility”, Simulation, Vol. 45, No. 2, pp76-86.

[17] Sevinc, S., (1990)“Automation of Simplification in Discrete Event Modelling and Simulation”,
International Journal of General Systems, Vol. 18, pp125-142.

[18] Pidd, M., (1999), "Just Modeling Through: A Rough Guide to Modeling", INTERFACES Vol.
29, No. 2, pp118-132.

[19] Davies, R., Roderick, P., &Raftery, J., (2003) "The Evaluation of Disease Prevention and
Treatment using Simulation Models", European Journal of Operational Research, pp53-66.

[20] Gamatie,A.,Rutten,E.,Huafeng,Y.,Boulet,P., &Dekeyser, J.L., (2008),“Modelling and Formal
Validation of High-Performance Embedded Systems”,International Symposium on Parallel and

Distributed Computing (ISPDC '08), pp215-222.

[21] Gittell,J.H.,Seidner,R.,&Wimbush, J., (2010)“A Relational Model of How High-Performance
Work-Systems Work”,Organization Science,pp21:490-506.

[22] Zhou,N.F., Sato,T., &Hasida, K., (2011)“Toward a High-performance System for Symbolic and
Statistical Modelling”URL: www.sci.brooklyn.cuny.edu/~zhou/papers/prism.pdf

[23] VisualSim, (2012)“VisualSim – a simulation tool from Mirabilis Design, Inc.”URL:
www.mirabilisdesign.com

Abu Asaduzzaman received the Ph.D. and M.S. degrees, both in computer
engineering, from Florida Atlantic University (FAU), Boca Raton, Florida in 2009
and 1997, respectively, and the B.S. degree in electrical engineering from
Bangladesh University of Engineering and Technology (BUET), Dhaka,
Bangladesh in 1993. Currently, he is working as an Assistant Professor in the
department of electrical engineering and computer science at Wichita State
University in Wichita, Kansas. He has published several journal and conference
papers and book chapter out of his research work. His research interests include computer architecture,
embedded systems, parallel computing, and performance evaluation. Mr. Asaduzzaman is a member of
the IEEE and other prestigious the honor societies. He served as a TPC member of IEEE IPCCC 2011
conference and as reviewer of NSF TUES (CS) and GRFP programs. He is currently serving as an IPC
member of IEEE ICCIT 2012 conference.

