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ABSTRACT 

In view of the fact that routing algorithms are network layer entities and the varying performance of any 

routing algorithm depends on the underlying networks. Localized routing algorithms avoid the problems 

associated with the maintenance of global network state by using statistics of flow blocking probabilities. 

We developed a new network parameter that can be used to predict which network topology gives better 

performance on the quality of localized QoS routing algorithms. Using this parameter we explore a 

simple model that can be rewired to introduce increasing the performance. We find that this model have 

small characteristic path length. Simulations of random and complex networks used to show that the 

performance is significantly affected by the level of connectivity. 
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1. INTRODUCTION 

The constantly changing nature of the Internet presents a challenge in evaluating routing 

behaviour in large-scale networks. Various studies have evaluated the performance of different 

routing algorithms on simulated networks with various topologies, such as ISP [1], random 

networks [3]. However, due to the characteristics and decentralized nature of the Internet it 

makes it hard to define a typical topology [5] [6]. In view of the fact that routing algorithms are 

network layer entities and the varying performance of any routing algorithm depends on the 

underlying network, in the efficient design and assessment of the performance of routing 

algorithms it is necessary to use different structures which vary in their characteristics and 

parameters. The study of complex networks has shown that they are heavily depending on the 

network’s structure [7]. 

However, the global QoS routing algorithms needs providing up-to-date changes of all links at 

all times making them impractical [2]. Such high levels of exchange may incur large 

communication, processing overheads and affect QoS routing algorithms [4]. An alternative of 

global QoS routing algorithms is eliminating typical link state advertisements [8] [12]. 

In this paper, we focus on localized QoS routing algorithms. The localized QoS routing 

proposed [8] [9] [10] is attempts to overcome the problems associated with the maintenance of 

the global network state information by making routing decisions based solely on the 

information collected locally at each source. In localized QoS routing schemes each source node 

has a predetermined set of candidate paths to each of the destinations. It has been shown that 

localized routing algorithms discriminate against alternative paths which prefer the shortest 

paths. These minimum hop algorithms usually outperform algorithms that do not take path 

length into consideration [11] [13]. Biasing towards short paths is particularly attractive in 
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large-scale networks, since path length is a relatively stable metric compared with link delay 

[14]. 

In this paper we developed a new network parameter that can be used to predict which network 

topology gives better performance on the quality of localized QoS routing algorithms. Using 

this parameter we explore a simple model that can be rewired to introduce increasing the 

connections that the network accepts. We find that this model have small characteristic path 

length. Simulations of random and complex networks used to show that the performance is 

significantly affected by the level of connectivity. 

2. Related Work 

The ubiquitous nature of complex networks has been recently studied in many fields in science 

[15] [16 [17], such as the Internet, the power grid and the World Wide Web (WWW). These 

have naturally been concerned with the network structure and connectivity constraints.  

 

2.1. Complex Networks 

Three well-known properties in complex network topologies are random networks, the small-

world network and scale-free network properties. These networks are intensively studied and 

fairly well developed, each of these networks are characterized by the way in which networks 

are generated and by several statistical metrics.  

 

2.1.1. Random Networks 

The most investigated model of random networks is the binomial random networks. The general 

discovery of this model was that many properties of these networks like appearance of trees and 

cycles arise quite suddenly at a threshold value [19].  

However, despite the fact that the position of the edges is random in random networks, a typical 

random network is rather homogeneous, the majority of the nodes having the same number of 

edges. 

2.1.2. Small World Networks 

The small world networks stands for networks with a small average path length and a high 

clustering coefficients, while the scale free networks stands for a network in which a few nodes 

have a very large degree whereas most nodes have a small degree. The small world networks 

are characterized by two main features [18]. Firstly, its average path length h is at most 

logarithmic in the number of nodes. Secondly, it has a high clustering coefficient C, which is the 

likeliness that if a node a is linked to b and b is linked to c then a is also linked to c. Thus, h  

and C are indicators of the network. A scale-free network is characterized by a distribution of 

degree that follows a power-law. If p(x) denotes the fraction of nodes having degree x, then the 

network is scale-free if ( )p x cx
α−= , where c is a constant [19].  

Although, various topologies manifest obvious small world properties, it has been shown that 

small world networks and scale-free topologies are rewiring randomly and they are in fact 

resulting in very sparsely connected networks. However, their topologies are not balancing the 

connectivity between nodes and it is inadequate for the performance of localized routing 

algorithms. 

 

2.2. Localized QoS Routing Algorithms 

Localized Quality of Service routing has recently been introduced as a new approach in the 

context of QoS routing. To the best of our knowledge our simulation study is the first that 
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considers network based model on the performance of localized QoS routing. The main 

localized quality of service routing algorithms are: 

2.2.1. Localized Proportional Sticky Routing Algorithm 

The localized proportional sticky routing algorithm (PSR) [8] was the first localized QoS 

routing scheme used in the context of computer networks. The basic idea behind the PSR 

approach assumes that route level statistics, such as the number of flows blocked, is the only 

available QoS state information at a source and based on this information the algorithm attempts 

to proportionally distribute the traffic load from a source to a destination among the set of 

candidate paths, according to their flow blocking probability. With this scheme each source 

node needs to maintain a set of candidate paths R. A path is based on flow blocking probability 

and the load is proportionally distributed to the destination among the predefined paths. In PSR 

there are minimum hop paths Rmin and alternative paths R
alt, where R = R

min U  R
alt. 

The PSR algorithm can be viewed as operating in two stages: proportional flow routing and 

computation of flow proportions. The scheme proceeds in cycles of variable lengths which form 

an observation period. During each cycle along a path r, any incoming connection request can 

be routed among paths selected from a set of eligible paths Ralt, which initially may include all 

candidate paths. A candidate path is ineligible depending on the maximum permissible flow 

blocking parameter γr, which determines how many times this candidate path can block a 

connection request before it becomes ineligible. 

For each minimum hop path, γr is set to ŷ, which is a configurable parameter, whereas the 

alternative path γr is dynamically adjusted between 1 and ŷ. When all candidate paths become 

ineligible a cycle ends and all parameters are reset to start the next cycle. An eligible path is 

finally selected depending on its flow proportions. The larger the flow proportions, the larger 

chances for selection. 

At the end of the observation period, a new flow proportion αr is computed for each path in the 

candidate path set, based on its observed blocking probability br.  After each observation period 

the minimum hop path flow proportions are adjusted to equalize their blocking probability 

(αr.br). For the alternative paths, the minimum blocking probability among the minimum hop 

paths b* is used to control their flow proportion. That is, for each
altr R∈ , if br<ψb

*
, γr=min 

(γr+1, ŷ). If br> b*, γr=max (γr-1, 1), where ψ is a configurable parameter to limit the ‘knock-on’ 

effect [3] under system overloads. Note that γr≥1 ensures that some flows are routed along 

alternative paths to measure their quality. 

 

2.2.2. Localized Credit Based Routing Algorithm 
 

The Credit Based Routing (CBR) [9] algorithm uses a simple routing procedure to route traffic 

across the network. The CBR scheme performs routing using crediting scheme for each 

candidate path that rewards a path upon flow acceptance and penalizes it upon flow rejection. 

The larger path credits, the larger chances for selection. The CBR algorithm keeps updating 

each path's credit upon flow acceptance and rejection and it does not compute a flow proportion. 

It is also keeps monitoring the flow blocking probabilities for each path and conveys the data to 

the credit scheme to use it in path to path selection. A set of candidate paths R between each 

source and destination is required in the CBR algorithm. Like PSR, CBR predetermined a 

minimum hop set min
R and an alternative paths set alt

R  where min alt
R R R= ∪  . CBR selects the 

largest credit path P.credits in each set, minimum hop paths set min
R  and alternative paths set 

alt
R upon flow arrival. The flow is routed along the minimum hop path that has the largest credit 

min
P  which is larger   than   the   alternative   path   that   has the    largest credits alt

P ; the flow 

is routed along an alternative path using this formula (1): 

 
min . .alt

P credits P credits≥ Φ× , where 1Φ ≤               (2) 
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Φ  is a system parameter that controls the usage of alternative paths. The CBR uses blocking 

probability in crediting schemes to improve the performance of the algorithm. The path credits 

are incremented or decremented upon flow acceptance or rejection using statistics of the path 

blocking probability. 

However, CBR uses a MAX_CREDITS system parameter to determine the maximum attainable 

credits for each path by computing the blocking probability. 

 

0 _Credits MAX CREDITS≤ ≤                          (3) 

 

CBR algorithm records rejection and acceptance for each path and uses a moving window for a 

predetermined period of M connection requests. It uses 1 for flow acceptance and 0 for flow 

rejection, dividing the number of 0's by M to calculate each path blocking probability for the 

period of M connection requests. 

 

2.2.3. Localized Quality Based Routing Algorithm  

 

We also consider the Quality Based Routing (QBR) proposed [20], QBR monitors the current 

residual bandwidth for each path on its bottleneck links, and incorporates its values into simple 

average path qualities. 

When a flow is accepted and the value of residual bandwidth is greater than the value of 

requested bandwidth, P.Quality is set to one. When a flow is accepted, but the residual 

bandwidth of the path is less than requested bandwidth, P.Quality is set to a value less than one.  

On the other hand, if the flow is rejected, P.Quality is set to a value less than zero. Hence, QBR 

continuously updates the resulting normalized values in the interval of {-1, 1}. QBR records 

data information for every path, and uses a simple moving average period to calculate the 

average path quality. For a period of M, average path quality of every path will be calculated 

using the most recent M flow data. 

For example, let { }0,0.6, 1, 0.1,1S = − −  represent the data of the last M =5 flows, the average path 

quality of M flows is (0+0.6-1-0.1+1)/5=0.1. 

Now, if a new flow is arrives with accepted quality, then the oldest element will be deleted from 

S and the set S will be updated to { }0.6, 1, 0.1,1,1S = − −  and the new path quality would be (0.6-1-

0.1+1+1)/5=0.3. 

Although the first localized QoS routing algorithm was Proportional Sticky Routing (PSR) [8], 

it has subsequently been shown that CBR and QBR algorithms outperform PSR algorithm [9] 

[20] in all situations.  

  

3. A New Clustering Metric 

Previous studies in the context of global QoS routing algorithms have tended to use average 

path length and the average node degree [3] [13] [21] to measure the level of connectivity. 

Clustering structures have a significant impact on the performance of various routing protocols 

[22]. Further topology parameters can help the analysis of network traffic, congestion and 

critical network issues [23]. However, localized QoS routing algorithms need a suitable 

topology that balances the distance between any pair of nodes in the topology with the 

flexibility of a large number of possible shortest candidate paths, which would reduce the 

blocking probability. For this reason it is desirable to design a new topology metric that 
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accurately captures the balance level of connectivity. We developed a balance clustering metric 

(BCM) which is a practical clustering accuracy metric. The basic idea of BCM involves 

calculating the distances between any pair of nodes and then computing a standard deviation 

path length which subjectively specifies how tightly the nodes are clustered throughout the 

topology. To the best of our knowledge the proposed metric has not been analyzed before, 

whether in the context of routing algorithms or topology based models. 

Let V be a set of topology nodes and L be the set of links in a topology ( ),G V L , we calculate 

the BCM metric using path length for each pair of nodes iΛ , let M
)

 be the path matrix which 

stores the number of hops along the direct path between source and destination pairs, M
)

is the 

shortest path length among all node pairs and the diagonal elements of M
)

are zero. The 

diagonal elements are all zero 0iiM = , and off-diagonals contain the number of hops (distance) 

along the path connecting each pair of nodes i j≠  is iv . 

Therefore the BCM metric is calculated using the standard deviation of the row distances as 

follows: 

 

( )
2

1

1

N

i

i

m

BCM
N

=

Λ −

=
−

∑
                            (4) 

 

Where, iΛ is the sum of rows or columns in the path matrix and m  is the arithmetic mean. The 

sum of row distances for each node is calculated by: 
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where N is the number of nodes. The BCM metric can well reflect the significance of the 

structure in the topology. The smaller the BCM the more significant the structure, if the BCM=0 

this means the distance between each source-destination pair is the same; this is considered to 

be a balanced topology. 

We can calculate the average path length ( h ) by summing the non zero elements of the path 

matrix and dividing by the number of non zero elements. 

/ ( 1)h T N N= −   where T is the sum of off-diagonal elements and N is the number of nodes.  

We can obtain the degree and clustering coefficients topology characteristics using its adjacency 

matrix A
)

. Any network topologyG with N nodes can be represented by its adjacency matrix 

A
)

with N N× elements ijA , whose value is 1ijA Aji= = if nodes i  and j  are connected and 0 

otherwise. 
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For example, we consider a simple topology depicted in Figure 1, in which the number of nodes 

N=6 and the number of links L=9.  

The diagonal elements are all zero and off diagonals contain the number of hops along the path 

connecting each pair of nodes. In fact the diameter of this topology is 2 hops; therefore the 

largest value for any element of L can be 2.  

 

 

 

 
 

Figure 1 Illustration of BCM Metric 

 

The average path length ( h ) is 1.4 the clustering coefficient is 0.9133 and the balance clustering 

metric (BCM) is therefore is 1.265 

 

 
 

4. Localized BCM Network Model 

We developed a simple model using a BCM metric that demonstrates that can be rewired to 

increase the connections that the network topology accepts. Thus, we assume that the topology 

is static in the sense that although links can be rearranged, the number of nodes is fixed 

throughout the forming process. However, our goal is not to provide a thorough evaluation of 

topology model design, rather we aim to provide an accurate topology structure that maintains 

best performance for localized routing algorithms. 

It is necessary to develop a simple method for network topology in which the level of 

connectivity can be adjusted in a controlled manner. This method incorporates the addition of 

new links, the removal of some existing links and rewiring without altering the number of nodes 
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or links in the topology. We thus examine the path matrix form, in which the elements of path 

matrix M
)

are equal to the distance separating nodes or 0 if no path exists. 

Thus, starting from the initial topology structure, it is necessary to monitor changes of topology 

by removing links for lower distance between existing node pairs and reconnecting to larger 

node distance pairs in agreement with the level of connectivity: removing the link min iΛ to 

min iv connected nodes and adding a link to max iΛ to max iv  node pairs. 

This method is quite natural, since it is possible to make several rewiring changes to decrease 

the BCM metric and then decrease the average path length significantly. On the other hand, 

several rewired links will not crucially change the local clustering property of the network. If we 

consider the example described in the previous section, the number of nodes N=6, the number 

of links L=9, the clustering coefficient is 0.91 and 1.265BCM = , as illustrated in the path 

matrix:  

 

 

 

 
We remove the link between nodes 3 0v v→ which is the lower iΛ  and add a link between 

nodes 5 4v v→  which is the larger iΛ .  

We repeat the rewiring process according to the level of connectivity, the following example 

demonstrates three rewiring changes and the BCM value has decreased from 1.265 to 0. The 

path matrix and topology representation is then modified as follows: 

 

 

 

 

 
 

Figure 2 BCM network model 
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We noted that the average path length is 1.4 and the BCM metric decreased to 0.  

5. Performance Evaluation 

We evaluate the performance of the proposed method using the localized QBR scheme and the 

localized CBR scheme. In the following, we first describe the simulation model and then 

compare the performance of the QBR and CBR schemes using the network model described in 

the previous Sections. 

 

5.1. Simulation Model 

We conducted extensive simulations implemented under OMNeT++ [24] [25] in order to test 

the performance of the localized QoS routing algorithms proposed in the previous Sections, 

according to the level of network connectivity. Consequently, our simulation experiments 

consider a range of topologies with similarities and differences in their important parameters, 

such as average path length, node degree and diameter, including standard deviation path length. 

We comment on similarities and differences between the trends in each topology.  

We consider random topologies with relatively different levels of connectivity to evaluate the 

effects of having multiple shortest candidate paths between pairs of nodes. In addition, we 

consider ISP topology which has been classified as a sparsely connected topology. The random 

topologies were generated using the BRITE generator [26] using Waxman’s model [27]. We 

also consider the scale-free topology which was generated on top of the BRITE generator [26] 

using the Barabási-Elbert model [16].      

5.2. Traffic Generation 

All links are assumed to be symmetrical, bidirectional and have the same capacity C (C=150 

Mbps) in each direction. We further assumed that the network topology remains fixed 

throughout each experiment in the simulation; hence we do not model the effects of link 

failures.  

Flows arrive to each source node according to a Poisson distribution with rate λ=1 and 

destination nodes are selected randomly by uniform distribution. Flow duration is exponentially 

distributed with mean value 1/µ, while flow bandwidth (QoS requested) is uniformly distributed 

within [0.1 – 2MB] interval. Following [11] , the offered network load is ρ = λNhb/µLC, where 

N is the number of nodes, L is the number of links in the network, b is the average bandwidth 

required by a flow, and h is the average path length (averaged across all source-destination 
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pairs). The parameters used in the simulation for CBR are MAX_CREDITS=5 and Φ=1. 

Blocking probabilities are calculated based on the most recent 20 flows.  

A set of candidate paths is chosen such that for each source-destination pair in a selected 

network topology that is chosen, the candidate set consists of paths that have at most one hop 

more than the minimum number of hops. All results were collected for all simulation 

experiments from at least 2,000,000 connection request arrivals, and the results were collected 

after 200,000 connection requests to allow a steady state to be reached. Each simulation 

experiment was repeated 20 times with different seeds; the 95% confidence intervals were 

computed and found to be extremely tight, such that in most figures only mean values of the 

results are presented. 

 

5.3. Performance Metrics 

The performance metrics used to measure the performance of the algorithms are flow blocking 

probability and bandwidth blocking probability. Flows are rejected when one of the links along 

the path from source to destination does not satisfy the requested bandwidth. The blocking 

probability is defined as: 

 

Flow blocking probability=
Number of rejected  requests

 Number of requests  arriving
            (7) 

 

We use also the notion of bandwidth blocking probability to solve discrimination against flows 

with large bandwidth requirements. 

The bandwidth blocking probability is defined as: 

 

Bandwidth blocking probability =
∑

∑

∈

∈

ci

Bi

ibandwidth

ibandwidth

)(

)(

                    (8) 

 

Here, B is the set of blocked paths and C is the set of total requested paths, and bandwidth (i) is 

the requested bandwidth for path i. 

 

6. Simulation Results 

6.1. Performance Prediction of Localized Routing Algorithms 

The localized QoS routing algorithms depend on the underlying network topology. To study the 

effects of topology on the performance, we evaluate four random topologies with similar size n 

= 18 and number of links L=58 under the same traffic load using the BCM metric described in 

Section 3.  

The main parameters and characteristics of the configurations are listed in Table 1. 
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Table 1 Characteristics of random topologies 

 

 
 

We have shown that the balance clustering metric BCM is increasing based on the level of 

connectivity. A lower BCM typically implies a dense topology with balanced path lengths and 

more flexibility in selecting routes, whereas a larger BCM implies lower connectivity. The 

differences in the BCM metric shown in Figure 3 reveal a significant influence regarding how 

well localized algorithms perform. 

 
Figure 3 Comparison of random topologies of CBR scheme using flow and bandwidth blocking 

probabilities 

Name  NODES LINKS 
Avg.    

degree 

Avg. path  

 length 
BCM 

Network1 18 58 3.22 2.32 2.09 

Network2 18  58 3.22 2.346 2.27 

Network3 18 58 3.22 2.43 5.77 

Network4 18 58 3.22 2.5  6..92 
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Figure 3 plots the flow blocking probability and bandwidth blocking probability as a function of 

offered load, using the CBR algorithm we compare between topologies using the same load. We 

increase the offered load by changing the mean holding time. Figure 3 shows the performance 

using both metrics. The performance of localized CBR strongly depends on the network 

topology measured by the value of the BCM metric; the random topology with higher 

connectivity has the flexibility of a large number of possible routes which reduces the blocking 

probability.  

However, the performance for the random topology with a lower connectivity degrades, which 

is more likely when most pairs of nodes have a larger path length of the network. 

 

 

 

 
 

Figure 4 Comparison of random topologies of QBR scheme using flow and bandwidth blocking 

probabilities 
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Similarly, Figure 4 compares the same topologies using both performance metrics for the QBR 

algorithm, the performance of the QBR algorithm depends on the level of connectivity. 

We also evaluated the performance of sparse ISP topology, as depicted in Table 2. However, the 

characteristic of ISP topology has relatively lower connectivity compared to random topologies. 

Table 2 lists the main parameters of the proposed topologies.    

 

 

 
Figure 5 Comparison of random and ISP topologies using flow blocking probability 
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Table 2 Characteristics of random and ISP topologies 

 
Figure 5 shows the comparison between ISP and random topologies. It can be seen that the 

performance degrades as the value of the BCM metric increases. Figure 5 shows that localized 

routing algorithms usually discriminate against alternative paths in which the algorithms prefer 

the shortest paths. It has been shown that the localized routing algorithms typically perform well 

in dense networks (i.e. Random 32 topology) which have the flexibility of a large number of 

routes between each source and destination.  

On the other hand, these algorithms are hard to use scarce resources in sparsely connected ISP 

topologies as they consume more resources to accommodate future flows. 

More generally, due to the growth of the Internet and increasing demand for predictable 

performance, the simulation results observed an ability to predict topology. Using the BCM 

metric it is possible to predict, between topologies, which are likely to give better performance. 

 

6.2. Network based Routing Model 

Figure 6 shows simulation results of the ISP topology which continuously adds links and 

removes existing links to the topology using the method described in Section 4 until a rich 

connectivity is achieved.  
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Figure 6 Comparison of the BCM network model with ISP topology 

 

Name Nodes Links 
Avg. 

degree 

Avg. path   

length   
BCM 

ISP 32 108 3.375 3.177 14.296 

Random1 32 122 3.8125 2.494 4.329 

Random2 32 122 3.8125 2.416 10.388 
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Figure 6 compares the performance of the ISP topology and BCM topology. It can be observed 

that the BCM topology enhances the performance using the same number of nodes and links of 

the topology. Using larger paths in sparse topologies tends to consume more resources for future 

flows causing performance degradation. In this form it is of negligible importance when load is 

low, as there are still sufficient resources to route future flows.   

Figure 7 compares the performance of the QBR algorithm under the scale-free topology and 

BCM topology, the performance is enhanced by changing the topology to BCM topology.   
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Figure 7 Comparison of the BCM network model with scale-free topology 
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(a) Flow Blocking Probability 
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(b) Average Path Length 

Figure 8 Flow blocking probability and average path length 

Figure 8 (a) observed a decreasing blocking probability as a function of decreasing the BCM 

metric. Figure 8(b) observed a decrease in the average path length in the BCM network which 

significantly satisfies the small world property and maintaining the same size of the original 

network. 

6.3. Varying Non-Uniform Traffic 

The destination nodes in the simulation experiments have been selected uniformly.  
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Figure 9 Impact of varying non-uniform traffic 
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However, in realistic networks the source nodes may receive more traffic demands, especially in 

the case of the communications in the sub-networks, which usually receive more demands than 

the communications across sub-networks.  

The authors in [28]  emphasized that the global uniform end-to-end IP QoS solution is not 

realistic. For these reasons, the scale-free topology has been modified and has been virtually 

divided into two sub-networks. The BCM metric of the sub-network1 is 4.22, the BCM metric 

of the sub-network2 is 4.5 and the BCM for the network topology is 8.72. 

We use a varying of non uniform traffic across the scale-free topology; the traffic demands 

routed inside the sub-network are three times higher than traffic routed between sub-networks. 

In Figure 9 flow blocking probability is plotted against different load conditions using uniform 

and non-uniform traffic for scale-free topology. It can be noticed that the localized routing 

algorithms perform extremely well under non-uniform traffic compared with uniform traffic. 

Hence, by formulating the correlated traffic in the building blocks of realistic topologies using 

the BCM metric, we are effectively reducing the blocking probability to obtain superior 

performance. 

 

7. Conclusions 

This paper investigated a new clustering metric based on localized QoS routing algorithms 

taking path length into consideration. The BCM metric showed to be a good indicator and can 

be used to predict which network gives better performance. We developed a BCM network 

model using a BCM metric that rewired to introduce increasing the performance. The results of 

the model have small characteristic path length under random and complex network topologies. 

The simulation results obtained show that the localized QoS routing algorithms typically 

perform better for highly connected networks where they are likely to be able to balance the 

load over the set of minimum hop candidate paths.  

However, the simulation results show that the localized QoS routing algorithms being hard to 

route scarce resources over sparse topologies. We generally suggest that the localized QoS 

routing algorithms should distribute the load according to connectivity levels to avoid 

congestion and be able to model the diversity seen in current realistic networks, such as the 

Internet.    
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