
International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

DOI : 10.5121/ijcnc.2011.3205 68

HEAD-TAIL VIDEO STREAMING OVER PEER TO

PEER SYSTEMS

Ali Sianati
†
, and Maghsoud Abbaspour

†
, and Maryam Norouzi

†

† Faculty of Electrical and Computer Engineering, Shahid Beheshti University G.C.,

Tehran, Iran.
asianati@yahoo.com, maghsoud@sbu.ac.ir, m.norouzi@mail.sbu.ac.ir

ABSTRACT

 P2P systems similar to file sharing applications are being used vastly due to unrestricted nature of these

systems. Their unrestricting comes from their ability to cooperate and aggregate peer’s resources and

their scalability. On the other side, today technologies are traditional client-server applications. These

applications can perform strongly but they are not scalable due to limitations on server resources. This

limitation of the client/server technology leads designers to use alternative technologies mainly P2P. As

a streaming system, P2P streaming network can be formed into two types, Tree-based and Mesh-based.

In this paper a new mesh-based P2P system named Head-Tail streaming is proposed. Head-Tail

simplifies packet scheduling and node failure recovery by using paired-peer sending and node failure

prediction. Our system outperforms ordinary systems comparing as delay and receive time. Our system

performs better than ordinary systems based on two reasons :Overlapping sequence of chunks and node
replacement policy.

KEYWORDS

Peer-to-Peer Video Streaming, P2P Packet Scheduling.

1. INTRODUCTION

Although today servers are very powerful to process Internet requests, they are so vulnerable to

flash crowds similar to sport events. There are several methods to increase the capacity of the

servers. One of them is to add more and powerful links to the servers or add more server

devices to the server farm, but the more devices, takes the more costs. Another technique is to

distribute load from the original servers to the edges of the Internet similar to Caches [1] [2].

In recent years, P2P systems are used as alternative to the current client/server approaches [3].

P2P gained visibility with Napster’s support for music sharing on the Web and today it is

increasingly becoming an important technique in various areas, such as distributed and

collaborative computing systems.

P2P systems and applications employ distributed resources to perform a function in a

decentralized manner. The resources encompass computing power, data (storage and content)

and network bandwidth [3]. Being distributed and cooperative makes such systems powerful

means for many purposes similar to file sharing and video streaming.

File sharing and video streaming systems are different in many aspects. File sharing systems

provide files to large number of user. Downloading files in these systems are not time

dependent. Hence, they can be downloaded in any order and be used later. But in streaming

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

69

case, data must be generated in real-time by source. In addition, data must be received by

receivers at constant rate, and chunks must arrive almost in sequence order so that they can be

played with short delay [4].

Video streaming system over P2P networks can be formed in to two structures: Tree-based and

Mesh-based [5]. Tree-based streaming systems are suitable for one-to-many streaming or what

is so-called live streaming in which video playbacks on all users are synchronized. Tree-based

systems can be used in multicast applications where IP Multicast is not applicable. Mesh-based

streaming systems are mostly used for on demand video in which playbacks of same video clip

on different users are not synchronized [6].

Constructing best tree, dealing with heterogeneous bandwidth, free riders, and node failure are

some drawbacks of tree-based systems. Node failure is the worst drawback in these systems

because in this case failed node affects all child nodes. Beside these drawbacks, the main

advantage in this design is that multiple consecutive packets are pushed down the tree along the

same paths, resulting inpredictable traffic flows and low control traffic [7].

Backup nodes are mostly used in these systems to recover from node failures [8] [9] [10] [11].

Some structures similar to SplitStream [12], split frames into layers and stream each one from

different branch. Each node is part of all stripes and node failure causes just one stripe to be

lost. Other structures similar to ZigZag [13] make use of both above methods to reinforce the

tree. Combining tree-based methods with mesh-based method similar to [14] can empower tree-

based systems. In such a system instead of one streaming source, several sources try to stream

the video, or child nodes can choose other parents in the case of low quality.

Mesh-based systems mainly suffer from scheduling. Packet scheduling must be accurate

enough to prevent packet duplicate and late arrival of packets. In comparison with tree-based

systems, construction and maintaining mesh-based systems are simpler and offer good

resilience to node failures. In this paper a novel mesh-based streaming system called Head-Tail

is presented. This system uses an efficient and yet simple methods to schedule packets between

senders. Hence recovering from node failure becomes more efficient.

The rest of this paper is organized as follows. In Section 3, we introduce the background as well

as related work. Section 4 describes the Head-Tail streaming system while section 5 provides

key issues in designing this system. Simulation results are presented in Section 6. Finally,

Section 7 concludes the paper.

2. RELATED WORKS

As mentioned in section 2, four factors reduce the performance of tree-based systems:

constructing best tree, dealing with heterogeneous bandwidth, free riders, and node failure.

Nodes can leave or arrive at any time, therefore constructing the best tree is challenging.

Furthermore the maximum received quality is constrained by nodes with lower bandwidths.

In spite of the well performance of tree based systems in reducing network traffic ,they are

really hard to implement. Moreover, these systems are proper for live situation. Hence, during

normal times these systems cannot be used. In such situations mesh-based system can play a

great role. In tree-based systems receiver have to choose senders from a set of leaf nodes. But in

mesh-based systems senders are chosen from the whole set of senders. Hence Receivers in

these systems choose their senders more efficiently. They can control their session freely

without any interference to other receivers. In the following some of mesh-based systems are

presented.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

70

 [5] and [15] present numerical scheduling methods for mesh-based systems. In their methods,

delay and bandwidth are estimated by numerical formulas and use the results as inputs to their

scheduling method.

In Gridmedia [16] a push-pull method is presented. At the beginning of the streaming, the

receiver is in the pull state. In pull state receiver requests all packets and monitors all senders.

After some steady period, the receiver enters the push state. In this state senders cooperatively

send required packets to the receiver. Using push state in this system reduces control packets

sent to senders. The biggest challenge in this system is scheduling senders in the push state.

LSONet [17] tries to find the best peers by considering the physical mesh constructed

between peers. Using Gossip based protocol; this system can monitor the membership of each

peer. Buffering techniques utilize request processing either. Constructing and maintaining an

efficient overlay network is the key challenge in LSONet.

Main purpose in MeshCast [18] is to avoid congestion. In MeshCast, articulation nodes are

used as points to redirect the congested flow to another path in the network. MeshCast can

perform well in situations that the congested link is not located at the neither receiver nor

sender side.

In [19], during download phase, each receiver becomes a new sender to new receivers. This

property is used as a mean to supply system with more senders. This is similar to BitTorrent

system where each receiver is a seed to other nodes [20].

3. HEAD-TAIL

One major component of mesh-based systems is scheduling. The scheduler must be accurate

enough to prevent duplicate or delayed data. Almost all of the mesh-based systems mentioned

before employ a similar scheduling method. Such a scheduler schedules chunks (pieces) of

layers in a sequential order. For example it assigns chunk 1 and 2 to sender 1 and chunk 3 to

sender 2 and so on. These kinds of schedulers behave complex mainly when node failure

occurs.

If sender 1 failed and left the network, sender 2 or sender 3 would give up packets which were

being sent by them to support sender 1. Of course scheduler should precisely consider it’s

preferable that other senders give up the packets or to continue sending own packets. Therefore

schedulers of such systems variously would make a mistake in scheduling. By losing

scheduling, this mistake would be solved; however useful bandwidth would be increased too.

This task becomes more difficult when the newly added peer to the sender list cannot meet the

requirements of the receiver. For example the new sender has a lower upload bandwidth

compared to failed node.

Since current video codec used in the Internet are layered encoded, they are sensitive to

packet loss. For example LC is a stack-based codec in which completeness of one layer is

constrained to completeness of all lower layers [21] [22]. In such a condition, decisions made

by scheduler are so critical because a mistake in scheduling can lead to one or more layer

losses.

The proposed method called Head -Tail, schedules chunks simply while it can recover

temporarily from node failures. Head-Tail is based on the fact that each bit stream has two

ends. Having two ends helps scheduler to schedule chunks from two points in the data stream.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

71

This is similar to the operation of Bubble and Quick sort. In these two sorting methods,

operation is done from beginning and the end of the array which results to better performance

of these sort algorithms.

Head-Tail method pairs each two suitable peers and assigns each end of the layer to one of

them. Peers start to send chunks from each end until they reach to a rendezvous point. Since

bandwidths of peers are heterogeneous and pairing them results to unequal total bandwidth,

rendezvous point may vary from pair to pair. Pairing helps scheduler to choose the best pair

based on the aggregated bandwidth. The operation of Head-Tail is simply demonstrated in

Figure1.

Figure 1. Simple Operation of Head-Tail

The first advantage of Head-Tail method is its simplicity. As expressed in Figure 1, after

choosing and pairing peers, one peer of each pair is chosen as Head and the other one as Tail.

Head is mostly the peer with more bandwidth and more stability. Head sends chunks from the

beginning of the layer and the Tail from the end of the layer. This operation continues until they

reach to a same chunk in the layer. In this point scheduler may start next layer or the same layer

in the next frame using the pair.

Dealing smoothly with node failures is another advantage of this method. One node failure (in

the best case) affects flow of one end. Scheduler without any effort may continue the process of

receiving chunks from the other end until a substitution for the failed node is found. Or in the

case of low bandwidth of the other peer scheduler may choose another peer for the pair. In the

worst case scheduler may drop the layer.

4. HEAD-TAIL STREAMING SYSTEM ARCHITECTURE

General schema, components of Head-Tail system and their relationships have been depicted in

Figure 2. There are some points in architecture of the system which should be attended: (a)

Video codec, (b) methods of Accessing to video information, (c) Streaming architecture and

protocol, (d) Node replacement policies, (e) Scheduling

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

72

Figure 2. Head-Tail system architecture

4.1 Video Coded

All of video formats which are used in the internet are layer base not to interrupt sending packet

if the bandwidth of sender and receiver are not enough. In such a codec, layers would be sent

according to the bandwidth between two nodes. MDC codec acts better than LC in networks

with high failing rate. In MDC, contrary to LC, if any problem in receiving one layer occurred,

it would not affect higher layers. Moreover this video format needs high bandwidth.

Due to high rate of node failing in P2P networks, MDC decreases the video quality. Because a

problem in one layer does not affect on any other layers, MDC is used for Head-Tail system. It

is Supposes that in the architecture in every frame, size of all layers is equal.

4.2 Methods of Accessing to video information

CHORD is used as a method of maintaining and searching information in Head-Tail system.

Three features that made us to use Chord instead of many other peer-to-peer lookup protocols

were its simplicity, provable correctness, and provable performance even in the face of

concurrent node arrivals and departures. Constructing its overlay network is easy and its defects

are removable. On the other hand it can be used to obtain node stability and find Free Riders

because CHORD has periodical messages to find failings [23].

The CHORD maintains the pieces of information of nodes, but in the proposed system

estimated available bandwidth of nodes also is considered. Therefore available bandwidth of

each node was added to hash table of Chord network. This change decreases the number of

exchanged messages between nodes in order to find suitable nodes.

Similar to other video distributing systems, hardware resources cannot be used for special

purposes in our system and current algorithms of internet should be observed. But one of these

resources, i.e. the allocation of output bandwidth of nodes, can be controlled by our system.

Output bandwidth can be allocated to each node; on the other hand bandwidth is saved for a

specific receiver. Updated available bandwidth is stored in CHORD network. Using stored data

in CHORD network, each node can estimate it’s bandwidth via suggested methods in [24] and

[25].

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

73

4.3 Streaming architecture

After joining the network, receiver may request peers which have a certain file from the

network. On receiving peers list, Head-Tail chooses a set of peers based on its download

bandwidth and the aggregated bandwidth of senders. In our implemented method Head-Tail

chooses peers based on the best fit and keeps other nodes as backup. Best nodes are chosen

based on their available bandwidth, packet loss and availability. Hence, nodes that meet best

criteria are chosen to be the main senders and the others are kept in a list as backup nodes in the

case of node failure.

4.4 Streaming protocol

Each network application has its own protocol to communicate with other nodes in the network.

In Head-Tail TCP/IP has been used as underlying network protocol and build our own protocol

above this layer.

Head-Tail uses out-of-bound signaling to control the entire streaming session. One connection

is used for sending control messages while the other one is to transfer video data. Control

messages are sent by TCP and data packets are sent using UDP. TCP helps to send reliable

messages while UDP helps to have more control on the flow of video data. The control

messages are small enough not to delay or congest and to be hold in one TCP message.

UDP suffers from unreliable transfer of data. Hence we added a simple ARQ method to our

protocol in order to requesting lost packets from senders. In our method scheduler estimates

RTT of each connection based on the history of that connection and requests probable lost

packets from the sender. RTT is calculated based on Jacobson/Karels algorithm [26].

Control protocol’s connections are two-way handshake. At first, receiver’s willing to make a

connection will be announced to sender by a control message, and then sender will send an

ACK message. After receiving this message by receiver, it opens UDP port.

4.5 Node replacement policy

Node leaving is based on two types: aware and unaware. In aware leaving sender informs

receiver that it's leaving the network. Receiver does not let sender to leave unless the current

receiving layer is completely downloaded. During transmission of the current layer scheduler

has enough time to choose a new peer and replace the leaving one.

Unaware leaving refers to node failure. Node failure may occur by link failure or closing the

streaming application without notification. In this case, last requested chunk is delayed or lost.

Based on the estimated RTT of the connection, scheduler requests last chunk again while the

second peer is still sending its assigned chunks. If the last chunk is received in the next RTT,

scheduler discovers a delay. If the chunk is not received during next RTT, scheduler discovers a

node failure and replaces the failed peer with another. During finding new peer and replacing

failed node, scheduler makes no effort to recover the lost chunks because the second peer is

sending the lost chunks from the other end of the layer. One technique to improve the

performance of this remedy is to choose replacing peer and make necessary connection to it

during retransmission of lost chunk.

Hence in the case of node failure, replacing peer takes part immediately. By using this remedy,

initializing connection and preparing replacing peer is overlapped with the discovery of the

node failure.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

74

Failure of the replacing peer is a major issue in node replacement technique. If the replacing

peer fails, the system experiences a double failure, one for the first failed node and another for

the second failed node. Hence more time is lost. Each time a delay occurs, the system predicts

a possible failure. Then it tries to find a suitable replacing peer. If replacing node fails then the

system has enough time to find another peer due to the long failure discovery phase delay.

4.6 Scheduling

Since packet lost or retransmitting information concurrently occurs, scheduling in mesh based

distributed systems is the most important part in designing. It means since information is

fragmented and distributed between nodes, there is no mapping between information and nodes.

Due to special design of Head-Tail System, scheduling is easy and make the system self

supporter. In this system, scheduler assigns information in packets from head and tail of layer.

Therefore lose propagation is zero and repetitive receiving or transferring propagation is about

zero. High performance of this system is because of none overlapping between assigned chunks

to senders. The nodes always try to reach each other, not to overtake each other.

It is probable to send a chunk twice only at the point of node meeting the same chunk which

happens rarely. Delay of first chunk has been sent with one node causes this problem,

furthermore the second node retransmit the chunk.

One of the most important differences between scheduling in a Head-Tail system and other

systems is the way of packet retransmitting. Traditional systems use a one way one node

method for transmitting. In the Head-Tail System though, we have a two way transmitting

system in which the nodes are moving toward each other until they meet at a meeting point

(rendezvous point). Hence if delay happens in one of the nodes there's no need to change the

scheduling and there's no need to consider the other nodes' packet delay.

5. SIMULATION RESULTS

We implemented our proposed streaming system in our new network simulator NS.Net. Our

scenario is similar to what is presented in [27]. But in our scenario we used low bandwidth

nodes mostly with bandwidths similar to dialup connections. In our scenario a receiver is placed

behind a router. Senders may join the network from the LAN side or from WAN side. Local

router is connected to WAN through a gateway. For the case of simplicity, WAN side nodes are

connected directly to this gateway. Figure 3 illustrates our simulation setup.

Figure 3. Simulation Setup

At first, system searches nodes containing a specific video. After finding nodes, scheduler sorts

them according to their available bandwidth, then selects best of them and prepares each 2

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

75

nodes to become a sender pair. After preparation, communications in order of strength pair are

established, and then the pair starts to send the video. Each receiver send a control message

when it receives a packet, in this way sender will send next packet.

When a chunk is received, scheduler checks status of the other sender of pair to control if whole

layer has been received or not. If pair senders have not met each other yet, scheduler assigns

next chunk of layer to one of the senders. If the entire layer has been received, scheduler keeps

first sender waiting until receiving the last chunk of the layer.

A simple system has been implemented to compare with Head-Tail system. In this ordinary

system each sender is responsible to send one layer completely. Therefore the problem of

sender meeting will not happen, so its implementation would be easy. For more coordination

between this system and Head-Tail system, bandwidth of each ordinary system’s node is equal

to sum of pair nodes' bandwidth in Head-Tail.

Whereas the Head-Tail system depends on control messages, there is no mechanism for error

detection in sender. Therefore sender failing would be detected late. In order to solve this

problem RTT, which is calculated with Jacobson/Karels [26], is used to predict arrival time of

the packets. In this method, RTT is calculated by equations (1) to (4).

Difference SampleRTT EstimatedRTT= − (1)

()*EstimatedRTT EstimatedRTT d Difference= + (2)

()*Deviation Deviation d Difference Deviation= + − (3)

* *TimeOut u EstimatedRTT q Deviation= + (4)

Parameter d is a random decimal number between zero and one. U and q are considered

constant equal to one and four respectively. Changing these parameters causes increasing or

decreasing System ability of error detection.

After receiving each packet, RTT value is calculated to be used for next packet. If the next

packet would not be received after this delay, the packet will be requested.

If the scheduler keeps faster sender waiting for slower sender at the rendezvous point, time of

faster sender would be wasted. We changed scheduler so that faster sender does not wait for the

other sender. Thus the scheduler permits faster sender to send a new layer immediately.

Consequently sending information improved and layers were completed sooner.

This change in scheduler makes another problem and that’s bad scheduling when the slower

sender fails, but faster sender has started to send new layer. In this situation, instead of finding

new peer in order to send lost chunk, Head-Tail acts like other systems and obligates faster

sender to send lost chunk and stop sending new layer. Of course this helps scheduler to find

replacing node and add it to the network, during receiving lost chunk.

A dynamic network has been simulated with more than 100 nodes and 10 routers in average.

Routers randomly placed and nodes randomly connected to routers. Speed and error rate of link

were chosen randomly. Links between nodes and their immediate routers are without error.

Figure 4 depicts Min, Max and Average hop count of different packets in 100 run. Of course

Min hop count is always one because in our random network, a router always is between two

nodes which are at the same network. The figure completely states that packets in different runs

had different delay which shows network dynamism in case of failing or error rates.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

Figure 4.

Figure 5 depicts Max and Average packet loss rate in links between routers. We considered it

between zero and %30. Different loss rates make different situations for receiver. To simulate

network congestion, packets are

Congestion percentage has been shown in

Figure 7 depicts Max, Min and Average delay of packet receiving on receiver side. In some

runs, packet delay is so high because packet is lost or traversed a long path to the receiver.

Nearly Min and Average delay overlapped because the number of packet with high delay is

little.

Figure 5.

Fig

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

. Packet’s hop count in random network

5 depicts Max and Average packet loss rate in links between routers. We considered it

between zero and %30. Different loss rates make different situations for receiver. To simulate

network congestion, packets are dropped loses without any announcement

Congestion percentage has been shown in Figure 6.

7 depicts Max, Min and Average delay of packet receiving on receiver side. In some

runs, packet delay is so high because packet is lost or traversed a long path to the receiver.

nd Average delay overlapped because the number of packet with high delay is

 Packet loss rate in links between routers

Figure 6. Packet loss rate in network

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

76

5 depicts Max and Average packet loss rate in links between routers. We considered it

between zero and %30. Different loss rates make different situations for receiver. To simulate

without any announcement to sender.

7 depicts Max, Min and Average delay of packet receiving on receiver side. In some

runs, packet delay is so high because packet is lost or traversed a long path to the receiver.

nd Average delay overlapped because the number of packet with high delay is

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

Figure

Figure

After constructing the network, CHORD overlay network must be constructed. Nodes randomly

enter to this network. By entering each node to the network, CHORD’s structure is updated.

Figure 8 depicts Max, Min and Average join time for

obvious in the figure, in one run the time was about 10 seconds due to CHORD’s network

destruction and replacement requesting. Although it is possible to happen, but it hardly ever

occurs.

Total node cooperation in distributed systems is shown in

the percent of video files are shared by nodes. In our simulation, nodes containing a special

video files are chosen to distribute.

Figure 9.

Figure 10 depicts propagation delay between requesting and receiving frame in Head

ordinary systems. At the simulation it was tried to have equal efficiency in both systems when

there is no error or failing. Nevertheless in stable situations Head

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

ure 7. Packet delay on receiver side

ure 8. Join time to CHORD network

After constructing the network, CHORD overlay network must be constructed. Nodes randomly

enter to this network. By entering each node to the network, CHORD’s structure is updated.

depicts Max, Min and Average join time for connecting to CHORD network. As it is

obvious in the figure, in one run the time was about 10 seconds due to CHORD’s network

destruction and replacement requesting. Although it is possible to happen, but it hardly ever

stributed systems is shown in Figure 9. Node cooperation means

the percent of video files are shared by nodes. In our simulation, nodes containing a special

video files are chosen to distribute.

. Node cooperation in distributed system

10 depicts propagation delay between requesting and receiving frame in Head

ordinary systems. At the simulation it was tried to have equal efficiency in both systems when

there is no error or failing. Nevertheless in stable situations Head-Tail acts also better than

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

77

After constructing the network, CHORD overlay network must be constructed. Nodes randomly

enter to this network. By entering each node to the network, CHORD’s structure is updated.

connecting to CHORD network. As it is

obvious in the figure, in one run the time was about 10 seconds due to CHORD’s network

destruction and replacement requesting. Although it is possible to happen, but it hardly ever

9. Node cooperation means

the percent of video files are shared by nodes. In our simulation, nodes containing a special

10 depicts propagation delay between requesting and receiving frame in Head-Tail and

ordinary systems. At the simulation it was tried to have equal efficiency in both systems when

cts also better than

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

78

ordinary one. At the simulation, nodes randomly leave the network and join it again. Leaving

the network without teardown message does not make any time waste therefore there is no

effect in the Figure 9.

There are two sharp slopes in Figure 9. At the first one, one of the sender pair has been failed

and at the second one, both of senders at one pair have been failed (double failure). These

events are happened in a random time and it is not obvious when these failings exactly

happened but average frame delays were depicted as 2 events in Figure 10.

At the first slope, when one sender fails consequently delay increases and performance

decreases very much, nevertheless self supporter structure of Head-Tail helps to have less delay

in comparison with ordinary system. Because the other sender in the pair continues sending

frames and does not change the scheduling. This does not happen in other ordinary systems and

node failings are not predictable.

Figure10. Receive time (propagation delay between requesting and receiving frame)

At the second slope which relates to double failure, delay in Head-Tail system is very less than

ordinary systems because it has predicted it. In most runs delay at single failing and double

failure are the same, but when the prediction is not correct, delay increases. In spite of this,

generally delay in Head-Tail is less than ordinary systems.

Our system performs better than ordinary systems based on two reasons :Overlapping

sequence of chunks and node replacement policy.

Overlapping sequence of chunks is useful when one peer has finished sending its assigned

chunks while the pairing peer has not. In this situation first peer can start sending chunks of

the same layer in the next frame. By using this method a little buffering is needed for the

system.

Discovering failed node and preparing replacing node can be done simultaneously. Almost all

of the today streaming systems wait until the failure is discovered. Then they try to find the

best replacement for the failed node. But our system predicts the failure. Every time a delay

occurs, our system tries to find the best replacement peer and initiates necessary connections.

During this phase, system may request the delayed chunk again. One major advantage of this

prediction is that finding and initiating connections is overlapped with the discovery phase. In

some cases replacing node may be left the network and is not online anymore. Hence system

faces double failure. Since our system finds replacing node during the discovering phase, in

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

79

case of node failure, system can find another node without losing extra time. Because

discovering phase takes lots of time.

Figure 11. Bandwidth fluctuation in one run

Figure 11 depicts the bandwidth fluctuation of our system during a normal run. When there is

no node to replace the failing node, bandwidth decreases and scheduler has to cancel current

layer and put the other node as backup node. In this situation, bandwidth of receiving and

consequently quality of video will greatly decrease. This situation is unpredictable in all

systems.

In our simulated runs, nodes join and leave randomly. We forced system to have a double

failure in 201second. In this point no suitable peer is found for failed node, hence system drops

one description. After some time system finds new peers. Then it selects two appropriate peers

and adds another description to the streaming session.

We implemented congestion in our system by using link error. Losing packets due to

congestion is similar to losing them in link error but no feedback is supported in link errors.

6. CONCLUSION

P2P streaming is a powerful tool to remove load on the streaming servers. Lots of issues must

be considered during designing of such systems, because such systems have restricted and weak

resources. Head-Tail streaming system tries to overlap times that are wasted in ordinary

systems, hence improving the overall performance of the system. Predicting can help streaming

system not to face double failure during failure discovery phase.

Our system in the phase of the design suffers from two issues: real congestion and current

playout time. Congestion is simulated by using error links in out NS.Net simulator. Current

playout time may help our system to abandon delayed frames and chunks, hence wasting less

bandwidth.

References

[1] J. Wang, “A survey of web caching schemes for the Internet,” ACM Computer Communication

Review, vol. 29, no. 5, 1999.

[2] A. Bestavros, and C. Cunha, “Server initiated document dissemination for the WWW,” IEEE

Data Engineering Bulletin, vol. 19, pp. 3-11, 1996.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

80

[3] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z.

Xu, “Peer-to-Peer computing,” HP Laboratories, 2003.

[4] R.J. Lobb, A. Paula, C, Silva, E. Leonardi, M. Mellia, and M. Meo, “Adaptive Overlay

Topology for Mesh-Based P2P-TV Systems,” in Proc. of the 18
th

 international workshop on

Network and operating systems support for digital audio and video, New York, 2009.

[5] N. Magharei, and R. Rejaie, “Understanding mesh based Peer-to-Peer streaming,” in NOSSDAV,

2006.

[6] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming systems,” Peer-to-

Peer Networking and Applications, vol. 1, no. 1, pp. 18-28, 2008.

[7] F. Picconi, and L. Massoulie, “Is There a Future for Mesh-Based live Video Streaming?,” in

Proc. of the 8th
 International Conference on P2P Computing, Germany, pp. 289-298, 2008.

[8] T.T. Do, K.A. Hua, and M.A. Tantaoui, “P2VOD: Providing fault tolerant Video on Demand

Streaming in P2P Environment,” In proc. of the IEEE International Conference on

Communication (ICC), pp. 1467-1472, 2004.

[9] G. An, D. Gui-guang, D. Qiong-hai, and L. Chuangl, “BulkTree: an overlay network

architecture for live media streaming,” Journal of Zhejiang University SCIENCE A, vol. 7, pp.

125-130, 2006.

[10] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, “Construction of an

efficient overlay multicast infrastructure for real time application,” In Proc. of IEEE INFOCOM,

pp. 1521-1531, 2003.

[11] S. Banerjee, S. Lee, R. Braud, B. Bhattacharjee, and A. Srinivasan, “SRMS: Scalable Resilient

Media Streaming,” In Proc. of NOSSDAV, pp. 4-9, 2004.

[12] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream:

high bandwidth content distribution in a cooperative environment” In Proc. of IPTPS, 2003.

[13] D.A. Tran, K.A. Hua, and T. Do, “Zigzag: an efficient P2P scheme for media streaming,” In

Proc. of IEEE Infocom, 2003.

[14] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda, “FatNemo: building a resilient multi-

Source multicast fat-tree”.

[15] T.P. Nguyen, and A. Zakhor, “Distributed video streaming over Internet,” SPIE conference on

multimedia computing and networking, San Jose, California, pp. 189-195, January 2002.

[16] L. Zhaot, J.G. Luo, M. Zhang, W.J. Fu, J. Luo, Y.F. Zhang, and S.Q. Yang, “Gridmedia: a

practical P2P based live video streaming system”.

[17] H. Guo, K.T. Lo, and C.T. Cheng, “LSONet: overlay networks construction for multi layered

live media streaming,” 8
th

 IEEE International Symposium on Multimedia (ISM), 2006.

[18] Y. Ma, and R.S. Aygün, “The methodology of mesh-cast streaming in P2P networks,” 7
th

 IEEE

International Symposium on Multimedia (ISM), 2005.

[19] J.B. Kwon, and H.Y. Yeom, “Distributed multimedia streaming over Peer-to-Peer networks,” 9
th

International Conference on Parallel and Distributed Computing, 2003.

[20] B. Cohen, “Incentives build robustness in bitTorrent,” 2003.

[21] M. Ghanbari, “Two-layer coding of video signals for VBR networks,” IEEE Journal on Selected

Areas in Communications, vol. 7, pp. 771-781, June 1989.

[22] V. K. Goyal, “Multiple description coding: compression meets the network,” IEEE Signal

Processing Magazine, vol. 18, no. 5, pp. 74–94, September 2001.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

[23] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord: a scalable Peer

to-Peer lookup service for Internet applications,”

August 2001.

[24] T. Anjali, and C. Scoglio, “

In Proc. of IEEE ELMAR, 2003.

[25] R. Prasad, and C. Dovrolis,

tools,” IEEE Network, vol.

[26] V. Jacobson, and M.J. Karels

Communication Review, vol.18, no. 4, 19

[27] R. Rejaie, and A. Ortega,

NOSSDAV, 2003.

Authors

Ali Sianati received his BSEE degree from Shahid Bahonar University of Kerman,Iran

in 2005. He is currently under graduation MSc student of Shahid Beheshti

Tehran, Iran. He has developed several academic applications similar a new network

simulator named NS.Net. He is a member of IEEE. His research interests include

networking, P2P networks and c# developing.

Maghsoud Abbaspour received his B

Tehran in 1992, 1996 and 2003 respectively. He joined Computer Engineering

department, Shahid Behesht University in 2005

networks, multimedia over wireless sensor networks, adh

over peer to peer systems.

Maryam Norouzi received the B.S.

University (Central Branch), Iran,

architecture. She received her M.S degree

She had studied on Image compression on wireless camera sensor networks and different

routing protocols especially real-time and reliable or secure routing protocols on wireless

sensor networks. Different traffic modeling especially multimedia streaming modeling

and Peer-to-Peer communications are another research subjects studying too.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord: a scalable Peer

Peer lookup service for Internet applications,” In proc. Of SIGCOMM, California, USA,

“TEMB: Tool for End-to-End Measurement of available Bandwidth

, 2003.

. Dovrolis, “Bandwidth estimation: metrics, measurement techniques, and

 17, pp. 27- 35, 2003.

J. Karels, “Congestion avoidance and control,” ACM SIGCOMM Computer

vol.18, no. 4, 1988.

Ortega, “PALS: Peer-to-Peer Adaptive Layered Streaming,”

received his BSEE degree from Shahid Bahonar University of Kerman,Iran

in 2005. He is currently under graduation MSc student of Shahid Beheshti university of

Tehran, Iran. He has developed several academic applications similar a new network

simulator named NS.Net. He is a member of IEEE. His research interests include

networking, P2P networks and c# developing.

received his B.S, M.S and Ph.D degree from University of

in 1992, 1996 and 2003 respectively. He joined Computer Engineering

Shahid Behesht University in 2005. He is interested in wireless sensor

networks, multimedia over wireless sensor networks, adhoc networks, and multimedia

received the B.S. degree in computer engineering from Azad

 in 2007 and she completed her master in computer

architecture. She received her M.S degree in Shahid Beheshti University, Iran, in 2011.

She had studied on Image compression on wireless camera sensor networks and different

time and reliable or secure routing protocols on wireless

ic modeling especially multimedia streaming modeling

Peer communications are another research subjects studying too.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011

81

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord: a scalable Peer-

, California, USA,

vailable Bandwidth,”

echniques, and

ACM SIGCOMM Computer

 In Proc. Of

