
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

DOI : 10.5121/ijcnc.2012.4109 113

A CAPACITY-BASED LOAD BALANCING AND JOB
MIGRATION ALGORITHM FOR HETEROGENEOUS

COMPUTATIONAL GRIDS

Said Fathy El-Zoghdy

Department of Mathematics & Computer Science, Faculty of Science
Menoufia University, Shebin El-Koom, Egypt.

Elzoghdy@yahoo.com

ABSTRACT

This paper addresses the problem of scheduling and load balancing in heterogeneous computational
grids. We proposed a two-level load balancing policy for the multi-cluster grid environment where
computational resources are dispersed in different administrative domains or clusters which are located
in different local area networks. The proposed load balancing policy takes into account the heterogeneity
of the computational resources. It distributes the system workload based on the processing elements
capacity which leads to minimize the overall job mean response time and maximize the system utilization
and throughput at the steady state. To evaluate the performance of the proposed load balancing policy,
an analytical model is developed. The results obtained analytically are validated by simulating the model
using Arena simulation package. The results show that the overall mean job response time obtained by
simulation is very close to that obtained analytically. Also, the simulation results show that the
performance of the proposed load balancing policy outperforms that of the Random and Uniform
distribution load balancing policies in terms of mean job response time. The maximum improvement ratio
obtained when the system workload is low. It decreases slowly as the system workload gradually
increases and it decreases rapidly when the system arrival rate λ approaches the system processing rate
µ because the system gradually approaches its saturation point.

KEYWORDS

Grid Computing, Resource Management, Load Balancing, Performance Evaluation, Queuing Theory,
Simulation Models

1. INTRODUCTION

The rapid development in computing resources has enhanced the performance of computers and
reduced their costs. This availability of low cost powerful computers coupled with the advances
and popularity of the Internet and high speed networks has led the computing environment to be
mapped from the traditionally distributed systems and clusters to the computing Grid
environments. Grid computing is a form of distributed computing that involves coordinating and
sharing computational power, data storage and network resources across dynamic and
geographically widely dispersed organizations, see figure 1. It allows the management of
heterogeneous, geographically widely distributed and dynamically available computational
resources which may belong to different individuals and institutions to solve large-scale
scientific applications. Such applications include, but not limited to meteorological simulations,
data intensive applications, research of DNA sequences, and nanomaterials.

mailto:Elzoghdy@yahoo.com

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

114

Basically, grid resources are geographically distributed computers or clusters (sites), which are
logically aggregated to serve as a unified computing resource. The primary motivation of grid
computing system is to provide users and applications pervasive and seamless access to vast
high performance computing resources by creating an illusion of a single system image [1-4].
Grid technologies offer many types of services such as computation services, application
services, data services, information services, and knowledge services. These services are
provided by the servers in the grid computing system. The servers are typically heterogeneous in
the sense that they have different processor speeds, memory capacities, and I/O bandwidths [4].

Due to uneven task arrival patterns and unequal computing capacities and capabilities, the
computers in one grid site may be heavily loaded while others in a different grid site may be
lightly loaded or even idle. It is therefore desirable to transfer some jobs from the heavily loaded
computers to the idle or lightly loaded ones in the grid environment aiming to efficiently utilize
the grid resources and minimize the average job response time. The process of load
redistribution is known as load balancing [4,5,6].

In general, load balancing policies can be classified into centralized or decentralized
(distributed) in terms of the location where the load balancing decisions are made. In centralized
load balancing policies, the system has only one load balancing decision maker which has a
global view of the system load information. Arriving jobs to the system are sent to this load
balancing decision maker, which distributes jobs to different processing nodes aiming to
minimize the overall system mean job response time. The centralized policies are more
beneficial when the communication cost is less significant, e.g. in the shared-memory multi-
processor environment. Many authors argue that this approach is not scalable, because when the
system size increases, the load balancing decision maker may become the bottleneck of the
system and the single point of failure [6-9,16].

On the other hand, in the decentralized load balancing policies, all computers (nodes) in the
distributed system are involved in making the load balancing decision. Since the load balancing
decisions are distributed, many researchers believe that the decentralized load balancing policies
are more scalable and have better fault tolerance. But at the same time, it is very costly to let
each computer in the system obtains the global system state information. Hence, in the
decentralized mechanisms, usually, each computer accepts the local job arrivals and makes
decisions to send them to other computers on the basis of its own partial or global information
on the system load distribution [17-19]. It appears that this policy is closely related to the
individually optimal policy, in that each job (or its user) optimizes its own expected mean
response time independently of the others [4-10].

Figure 1. Characteristics of Grids

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

115

Although load balancing problem in traditional distributed systems has been intensively studied
[6-14], new challenges in Grid computing still make it an interesting topic, and many research
projects are interested in this problem.

In this paper, we present a two-level load balancing policy for the grid computing environment.
The proposed policy tends to improve grid resources utilization and hence maximizes
throughput. We focus on the steady-state mode, where the number of jobs submitted to the grid
is sufficiently large and the arrival rate of jobs does not exceed the grid overall processing
capacity [15]. The steady-state mode will help us to derive optimality for the proposed load
balancing policy. The class of problems addressed by the proposed load balancing policy is the
computation-intensive and totally independent jobs with no communication between them. An
analytical model is presented. This model is based on queuing theory. We are interested in
computing the overall mean job response time of the grid system. The results obtained
analytically are validated by simulating the model using Arena simulation package.

The rest of this paper is organized as follows: Section 2 presents related work. Section 3
describes the structure of grid computing service model. Section 4 introduces the proposed grid
load balancing policy. Section 5 presents the analytical queuing model. In section 6, we present
performance evaluation of the proposed load balancing policy. Finally, Section 7 summarizes
this paper.

2. RELATED WORK AND MOTIVATIONS

Load balancing has been studied intensively in the traditional distributed systems literature for
more than two decades. Various policies and algorithms have been proposed, analyzed, and
implemented in a number of studies [6-14]. It is more difficult to achieve load balancing in Grid
systems than in traditional distributed computing ones because of the heterogeneity and the
complex dynamic nature of the Grid systems. The problem of load balancing in grid architecture
is addressed by assigning loads in a grid without neglecting the communication overhead in
collecting the load information. It considers load index as a decision factor for scheduling of
jobs in a cluster and among clusters.

Many papers have been published recently to address the problem of load balancing in Grid
computing environments. Some of the proposed grid computing load balancing policies are
modifications or extensions to the traditional distributed systems load balancing policies. In
[23], a decentralized model for heterogeneous grid has been proposed as a collection of clusters.
In [1], the authors presented a tree-based model to represent any Grid architecture into a tree
structure. The model takes into account the heterogeneity of resources and it is completely
independent from any physical Grid architecture. However, they did not provide any job
allocation procedure. Their resource management policy is based on a periodic collection of
resource information by a central entity, which might be communication consuming and also a
bottleneck for the system. In [24], the authors proposed a ring topology for the Grid managers
which are responsible for managing a dynamic pool of processing elements (computers or
processors).The load balancing algorithm was based on the real computers workload. In [21],
the authors proposed a hierarchical structure for grid managers rather than ring topology to
improve scalability of the grid computing system. They also proposed a job allocation policy
which automatically regulates the job flow rate directed to a given grid manager.

In this paper we propose a decentralized load balancing policy that can cater for the following
unique characteristics of practical Grid Computing environment:

• Large-scale. As a grid can encompass a large number of high performance computing
resources that are located across different domains and continents, it is difficult for

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

116

centralized model to address communication overhead and administration of remote
workstations.

• Heterogeneous grid sites. There might be different hardware architectures, operating
systems, computing power and resource capacity among different sites.

• Effects from considerable transfer delay. The communication overhead involved in
capturing load information of sites before making a dispatching decision can be a major
issue negating the advantages of job migration. We should not ignore the considerable
dynamic transfer delay in disseminating load updates on the Internet.

3. GRID COMPUTING SERVICE STRUCTURE

The grid computing model which we consider is a large-scale computing service model that is
based on a hierarchical geographical decomposition structure. Every user submits his computing
jobs and their hardware requirements to the Grid Computing Service (GCS). The GCS will
reply to the user by sending the results when it finishes the execution of the jobs. In the GCS,
jobs pass through four phases which can be summarized as follows:

3.1 Task Submission Phase

Grid users can submit their jobs through the available web sites browsers. This makes the job
submission process easy and accessible to any number of clients.

3.2 Task allocation phase

Once the GCS receives a job, it looks for the available resources (computers or processors) and
allocates the suitable resources to the task.

3.3 Task execution phase

Once the needed resources are allocated to the task, it is scheduled for execution on that
computing site.

3.4 Results collection phase

When the execution of the jobs is finished, the GCS notify the users by the results of their jobs.
Three-level Top-Down view of the considered grid computing model is shown in figure 2 and
can be explained as follows:

Figure 2. Grid Computing Model Structure

Level 0: Local Grid Manager (LGM)

Any LGM manages a pool of Site Managers (SMs) in its geographical area. The role of LGM is
to collect information about the active resources managed by its corresponding SMs. LGMs are
also involved in the task allocation and load balancing process in the grid. New SMs can join
the GCS by sending a join request to register themselves at the nearest parent LGM.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

117

Level 1: Site Manager (SM)

Every SM is responsible for managing a pool of processing elements (computers or processors)
which is dynamically configured (i.e., processing elements may join or leave the pool at any
time). A new joining computing element to the site should register itself within the SM. The role
of the SM is to collect information about active processing elements in its pool. The collected
information mainly includes CPU speed, and other hardware specifications. Also, any SM has
the responsibility of allocating the incoming jobs to any processing element in its pool
according to a specified load balancing algorithm.

Level 2: Processing Elements (PE)

Any private or public PC or workstation can join the grid system by registering within any SM
and offer its computing resources to be used by the grid users. When a computing element joins
the grid, it starts the GCS system which will report to the SM some information about its
resources such as CPU speed.

Within this hierarchy, adding or removing SMs or PEs becomes very flexible and serves both
the openness and the scalability of proposed grid computing service model.

The LGMs represent the entry points of computing jobs in the proposed grid computing model.
Any LGM acts as a web server for the grid model. Clients (users) submit their computing jobs
to the associated LGM using the web browser. According to the available load balancing
information, the LGM will pass the submitted jobs to the appropriate SM. The SM in turn
distributes these computing jobs according to the available site load balancing information to a
chosen processing element for execution. LGMs all over the world may be interconnected using
a high-speed network as shown in figure. 2.

As explained earlier, the information of any processing element joining or leaving the grid
system is collected at the associated SM which in turn transmits it to its parent LGM. This
means that a communication is needed only if a processing element joins or leaves its site. All
of the collected information is used in balancing the system workload between the processing
elements to efficiently utilize the whole system resources aiming to minimize user jobs response
time. This policy minimizes the communication overhead involved in capturing system
information before making a load balancing decision which improves the system performance. .

4. GRID LOAD BALANCING POLICY

We proposed a two-level load balancing policy for the multi-cluster grid environment where
clusters are located in different local area networks. The proposed load balancing policy takes
into account the heterogeneity of the computational resources. It distributes the system workload
based on the processing elements capacity. We assume that the jobs submitted to the grid
system are totally independent jobs with no inter-process communication between them, and
that they are computation intensive jobs.

To formalize the load balancing policy, we define the following parameters for grid computing
service model:

• Job Parameters: ID of job, number instructions per job NJI, and job size in bytes JS.

• Processing Element Capacity (PECij): Number of jobs that can be executed by jth PE
at full load in ith site per second. The PEC can be calculated using the PEs CPU speed
and assuming an Average Number of job Instructions ANJI.

• Site Processing Capacity (SPCi): Number of jobs that can be executed by ith site per
second. Hence, the SPCi is calculated by summing the PECij of all jth PEs at ith site.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

118

• Local Grid Manager Processing Capacity (LPC): Number of jobs that can be
executed under the responsibility of the LGM per second. The LPC can be calculated by
summing all the SPCs for all the sites managed by the LGM.

• Performance Parameters: Mean job response time, and Workload information traffic.

The proposed load balancing policy is a multi-level one as it could be seen form figure 3. This
policy is explained at each level of the grid architecture as follows:

4.1 Local Grid Manager Load Balancing Level

Consider a Local Grid Manager (LGM) which is responsible of a group of site managers (SMs).
As mentioned earlier, the LGM maintains information about all of its SMs in terms of
processing capacity SPCs. The total processing capacity of a LGM is LPC which is the sum of
all the SPCs for all the sites managed by that LGM. Based on the total processing capacity of
every site SPC, the LGM scheduler distributes the workload among his sites group members
(SMs). Let N denotes the number of jobs arrived at a LGM in the steady state. Hence, the ith site
workload (SiWL) which is the number of jobs to be allocated to ith site manager is obtained as
follows:

)1(
LPC

SPC
NWLS i

i ×=

4.2 Site Manager Load Balancing Level

As it is explained earlier every SM manages a dynamic pool of processing elements
(workstations or processors). Hence, it has information about the PECs of all the processing
elements in its pool. The total site processing capacity SPC is obtained by summing all the
PECs of all the processing elements in that site. Let M be the number of jobs arrived at a SM in
the steady state. The SM scheduler will use a load balancing policy similar to that used by the
LGM scheduler. This means that the site workload will be distributed among his group of
processing elements based on their processing capacity. Using this policy, the throughput of
every processing element will be maximized and also its resource utilization will be improved.
Hence, the ith PE workload (PEiWL) which is the number of jobs to be allocated to ith PE is
obtained as follows:

)2(
SPC

PEC
MWLPE i

i ×=

Example: Let N =2000 j/s (job/second) arrive at a LGM with five SMs having the following
processing capacities:

SPC1=450 j/s, SPC2=600 j/s, SPC3=475 j/s, SPC4=625 j/s, and SPC5=350 j/s.

Hence, LPC= 450+600+475+625+350=2500 j/s. So, the workload for every site will be
computed according to equation 1 as follows:

sj /360
2500

450
2000WLS1 =×=

sj /480
2500

600
0020WLS2 =×=

sj /380
2500

475
2000WLS3 =×=

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

119

sj /500
2500

625
0020WLS4 =×=

sj /280
2500

350
2000WLS5 =×=

Then workload of every site will be allocated to the processing elements managed by that site
based on equation 2. As an example, suppose that the 3rd site contains three PEs having the
processing capacities of 240j/s, 210j/s, and 150j/s respectively. Hence the site total processing
capacity SPC= 240+210+150= 600 t/s. Remember that this site workload equals to 380 j/s as
computed previously. So, the workload for every PE will be computed according to equation 2
as follows:

j/s152
600

240
803WLPE1 =×=

j/s133
600

210
803WLPE2 =×=

j/s95
600

150
380WLPE 3 =×=

From this simple numerical example, one can see that the proposed load balancing policy
allocates more workload to the faster PEs which improves the system utilization and maximizes
system throughput.

5. ANALYTICAL MODEL

To compute the mean job response time analytically, we consider a LGM section as simplified
grid model. In this model, we will concentrate on the time spent by a job in the processing
elements. Consider the following system parameters:

• λ is the external job arrival rate from grid clients to a LGM.

• λi is the job flow rate from the LGM to the ith SM which is managed by that LGM.

• λij is the job flow rate from the ith SM to the jth PE managed by that SM.

• µ is the LGM processing capacity.

• µ i is processing capacity of the ith SM.

• µ ij is the processing capacity of the jth PE which is managed by ith SM.

• ρ=λ/µ is the system traffic intensity. For the system to be stable ρ must be less than 1.

•
i

i
i

 = is traffic intensity of the ith SM .

•
ij

ij
ij

 = is traffic intensity of the jth PE which is managed by ith SM.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

120

We assume that the jobs arrive from clients to the LGM according to a time-invariant Poisson
process. Jobs arrive at the LGM sequentially, with inter-arrival times which are independent,
identically, and exponentially distributed with the arrival rate λ j/s. Simultaneous arrivals are
excluded. Every PE in the dynamic site pool will be modeled by an M/M/1 queue. Since jobs
that arrive to the LGM will be automatically distributed on the sites managed by that LGM with

a routing probability
LPC

SPC
PrS i

i = according to the load balancing policy (LBP), where i is the

site number, hence
LPC

SPC
Pr i×=×= ii S . Again the site i arrivals will also automatically be

distributed on the PEs managed by that site with a routing probability
i

ij
ij SPC

PEC
PrE = based on

the LBP, where j is the PE number and i is the site number. Hence,
i

ij
j SPC

PEC
PrE ×=×= iiij .

Since the arrivals to LGM are assumed to follow a Poisson process, then the arrivals to the PEs
will also follow a Poisson process. We also assume that the service times at the jth PE in the ith

SM site is exponentially distributed with fixed service rate µ ij j/s. Note that µ ij represents the
PE's processing capacity (PEC) in our load balancing policy. The service discipline is First
Come First Serviced. This grid queueing model is illustrated in figure 3.

Figure 3. Grid Computing Queueing Model

The state transition diagram of the jth PE in ith site manager is shown in figure 4.

Figure 4. A state transition diagram of jth PE in ith site manager.

As mentioned earlier, we are interested in studying the system at the steady state that is the
traffic intensity is less than one i.e., ρ<1. To compute the expected mean job response time, the
Little's formula will be used. Let E[Tg] denotes the mean time spent by a job at the grid to the
arrival rate λ and E[Ng] denotes the number of jobs in the system. Hence by Little formula, the
mean time spent by a job at the grid will be given by equation 3 as follows:

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

121

)3(][][gg TENE ×=
.

][gNE can be computed by summing the mean number of jobs in every PE at all the grid sites.

So, ∑∑
==

=
n

j

ij
PE

m

i
g NENE

11

][][, where i=1,2,..m, is the number of site managers managed by a

LGM and j=1,2,…,n is the number of processing elements managed by a SM and][ij
PENE is the

mean number of jobs in a processing element number j at site number i. Since every PE is

modeled as an M/M/1 queue, then
ij

ijij
PENE

−

=
1

][, where
ij

ij
ij

 = , ij =PECij for the jth PE

at the ith site. From equation 3, the expected mean job response time is given by:

∑∑
= =

×=×=
m

i

n

j

ij
PEgg NENETE

1 1

][
1

][
1

][

Note that the stability condition for PEij is 1ij .

6. RESULTS AND DISCUSSION

6.2 Experimental Environment

The simulation was carried out using the great discrete event system simulator Arena [25]. This
simulator allows modeling and simulation of entities in grid computing systems namely users,
applications, resources, and resource load balancers for design and evaluation of load balancing
algorithms.

To evaluate the performance of grid computing system under the proposed load balancing
policy, a simulation model is built using Arena simulator. This simulation model consists of one
LGM which manages a number of SMs which in turn manages a number of PEs (Workstations
or Processors). All simulations are performed on a PC (Core 2 Processor, 2.73GHz, 1GB RAM)
using Windows xp OS.

6.2 Simulation Results and Analysis

We assume that the external jobs arrive to the LGM sequentially, with inter-arrival times which
are independent, identically, and exponentially distributed with mean 1/λ j/s. Simultaneous
arrivals are excluded. We also assume that the service times of LGMs are independent and
exponentially distributed with mean 1/µ j/s. The service discipline used is first-come-first-
served.

The performance of the grid computing system under the proposed load balancing policy is
compared with two other policies namely; Random distribution load balancing policy and
Uniform distribution load balancing policy.

In the Uniform distribution load balancing policy the job flow rate (routing probability) from

LGM to its SMs is fixed to the value
sn

1
, where sn is the number of SMs in the grid computing

service model. Also the job flow rate (routing probability) from any SM to its PEs is fixed to the

value
PEn

1
, where PEn is the number of PEs which are managed by that site.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

122

In the Random distribution load balancing policy a resource for job execution is selected
randomly without considering any performance metrics to that resource or to the system. This
policy is explained in [26]. However, in the proposed load balancing policy all the arriving jobs
from clients to the LGMs are distributed to the SMs based on their processing capacity to
improve utilization aiming to minimize mean job response time.

In our simulation experiments, a heterogeneous grid environment was built by using various
resource specifications. It has 1 LGM, 3 SMs having 4, 3, and 5 PEs respectively. We fixed the
total grid processing capacity µ=LPC=1700 j/s while changing the grid arrival rate λ from 400

j/s to 1690 j/s. Note that the system traffic intensity

 = must be less than 1 (i.e., λ < µ) for

the system to be in the steady state. First, the mean job response time under the proposed load
balancing policy is computed analytically and by simulation as shown in Table I. From that
table, we can see that the response times obtained by the simulation approximate that obtained
analytically. Also, from table I, we can notice that the proposed load balancing policy is
asymptotically optimal because its saturation point (λ/µ)≈1 is very close to the saturation level
of the grid computing model.

Using the same grid model parameters setting of our simulation experiment, the performance of
the proposed load balancing policy is compared with that of the Uniform distribution, and
Random distribution as shown in figure 5. From that figure we can see that proposed LBP
outperforms the Random distribution and Uniform distribution LBPs in terms of system mean
job response time. It is also noticed that the system mean response time obtained by the uniform
LBP lies between that of the proposed and random distribution LBPs.

Table 1. Comparison between analytic and simulation mean job response times using the
proposed LBP

Traffic Intensity ρ=λ/µ Analytic Response
Times

Simulation Response
Times

0.235294
0.294118
0.352941
0.411765
0.470588
0.529412
0.588235
0.647059
0.705882
0.764706
0.823529
0.882353
0.941176
0.970588
0.976471
0.982353
0.988235
0.991176
0.994118

0.009231
0.010000
0.010909
0.012000
0.013333
0.015000
0.017143
0.020000
0.024000
0.030000
0.040000
0.060000
0.120000
0.240000
0.300000
0.400000
0.600000
0.800000
1.200000

0.009431
0.010210
0.010709
0.012032
0.012833
0.015401
0.017023
0.019821
0.024025
0.029903
0.040240
0.058024
0.119012
0.238671
0.297401
0.401202
0.610231
0.798502
1.201692

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

123

Figure 5. System mean job response time versus job arrival rate λ
while keeping job processing rate µ=1700 j/s.

To evaluate how much improvement obtained in the system mean job response time as a result
of applying the proposed LBP, we computed the improvement ratio UpU T/)T(T − , where UT is

the system mean job response time under uniform distribution LBP and pT is the system mean

job response time under proposed LBP, see figure 6. From that figure, we can see that the
maximum improvement ratio obtained when the system workload is low. It decreases slowly as
the system workload gradually increases and it decreases rapidly when the system arrival rate λ
approaches the system processing rate µ (i.e., ρ≈1) because the system gradually approaches its
saturation point.

Figure 6. System mean response time improvement ratio versus job arrival rate λ
while keeping job processing rate µ=1700 j/s

This result was anticipated since the proposed LBP distributes the system workload based on the
processing capacity which leads to maximizing system resources utilization ratio and as a result
system mean job response time is minimized. In contrast, the Random distribution load
balancing policy distributes the system workload randomly on the system PE without putting
any performance metric in mind which may lead to unbalanced system workload distribution
which implies poor resources utilization and hence, the system performance is affected. Also,
the Uniform distribution load balancing policy distributes the system workload equally on the
PEs without putting their processing capacity or any workload information in mind which

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

124

repeats the same situation as the Random distribution LBP. To be fair, we must say that
according to the obtained simulation results; see figure 5, the performance of the Uniform
distribution LBP is much better than that of the Random distribution LBP.

7. CONCLUSION

This paper addresses the load balancing problem for the computational grid environment. We,
proposed a two-level load balancing policy for the multi-cluster grid environment where clusters
are located in different local area networks. It distributes the grid workload based on the
processing elements capacity which leads to minimize the overall job mean response time and
maximize the system utilization and throughput at the steady state. An analytical model is
developed to compute the expected mean job response time in the grid system. A simulation
model is built using Arena simulator to evaluate the performance of the proposed load balancing
policy and validate the analytic results. The results show that the overall mean job response time
obtained analytically is very close to that obtained by the simulation. Also, it shows that the
performance of the proposed load balancing outperforms that of the Random and Uniform
distribution load balancing policies in terms of mean job response time. The maximum
improvement ratio obtained when the system workload is low. It decreases slowly as the system
workload gradually increases and it decreases rapidly when the system arrival rate λ approaches
the system processing rate µ (i.e., ρ≈1) because the system gradually approaches its saturation
point.

REFERENCES

[1] B. Yagoubi and Y. Slimani (2007) "Task Load Balancing Strategy for Grid Computing", Journal
of Computer Science, Vol. 3, No. 3, pp. 186-194.

[2] K. Lu, R. Subrata, and A. Y. Zomaya (2007) "On The Performance-Driven Load Distribution
For Heterogeneous Computational Grids", Journal of Computer and System Science, Vol. 73,
No. 8, pp. 1191-1206.

[3] S. Parsa and R. Entezari-Maleki (2009) " RASA: A New Task Scheduling Algorithm in Grid
Environment", World Applied Sciences Journal 7 (Special Issue of Computer & IT), pp. 152-
160.

[4] K. Li (2008) "Optimal load distribution in nondedicated heterogeneous cluster and grid
computing environments", Journal of Systems Architecture, Vol. 54, pp. 111–123.

[5] Y. Li, Y. Yang, M. Ma, and L. Zhou (2009) "A hybrid load balancing strategy of sequential jobs
for grid computing Environments", Future Generation Computer Systems, Vol. 25, pp. 819-828.

[6] H. Kameda, J. Li, C. Kim, and Y. Zhang (1997) Optimal Load Balancing in Distributed
Computer Systems, Springer, London.

[7] S. F. El-Zoghdy, H. Kameda, and J. Li (2003) "Numerical Studies on Paradoxes in Non-
Cooperative Distributed Computer Systems", Game Theory and Applications, Vol. 9, pp. 1-16.

[8] S. F. El-Zoghdy, H. Kameda, and J. Li (2006) "Numerical Studies on a Paradox for Non-
Cooperative Static Load Balancing in Distributed Computer Systems", Computers and
Operation Research, Vol. 33, pp. 345-355.

[9] S. F. El-Zoghdy (2006) "Studies on Braess-Like Paradoxes for Non-Cooperative Dynamic Load
Balancing in Distributed Computer Systems", Proc. of the IASTED Inter. Conf. on Parallel and
Distributed Computing and Networks, pp. 238-243

[10] S. F. El-Zoghdy, H. Kameda, and J. Li (2002) "A comparative study of static and dynamic
individually optimal load balancing policies", Proc. of the IASTED Inter. Conf. on Networks,
Parallel and Distributed Processing and Applications, pp. 200-205.

[11] A. N. Tantawi and D. Towsley (1985) "Optimal static load balancing in distributed computer
systems", J. ACM, Vol.32, No.2, pp.455-465

[12] J. Li and H. Kameda (1994) "A Decomposition Algorithm for Optimal Static Load Balancing in
Tree Hierarchy Network Configurations", IEEE Trans. Parallel and Distributed Systems, Vol. 5,
No. 5, pp.540-548.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

125

[13] J. Li and H. Kameda (1998) "Load Balancing Problems for Multiclass Jobs in
Distributed/Parallel Computer Systems", IEEE Trans. Comput., Vol. 47, No. 3, pp322-332.

[14] R. Mirchandaney, D. Towsley, and J. A. Stankovic (1990) "Adaptive Load Sharing in
Heterogeneous Distributed Systems", J. Parallel and Distributed Computing", Vol. 9, pp.331-
346.

[15] O. Beaumont, A. Legrand, L. Marchal and Y. Robert (2005) "Steady-State Scheduling on
Heterogeneous Clusters", Int. J. of Foundations of Computer Science, Vol. 16, No.2, pp. 163-
194.

[16] M. J. Zaki, W. Li, and S. Parthasarathy (1996) "Customized dynamic load balancing for network
of Workstations". In Proc. of the 5th IEEE Int. Symp. HDPC: p. 282-291.

[17] A. Barak, O. La’adan (1998) "The MOSIX multicomputer operating system for high
performance cluster computing", J. Future Gener. Comput. Systems, Vol. 13, No. (4-5), pp. 361–
372.

[18] H.-U. Heiss, M. Schmitz (1995) "Decentralized dynamic load balancing: The particles
approach", Inform. Sci., Vol. 84, No. (1–2), pp. 115-128

[19] M.H. Willebeek-LeMair, A.P. Reeves (1993) "Strategies for dynamic load balancing on highly
parallel computers", IEEE Trans. Parallel Distrib. Systems, Vol. 4, No. 9, pp. 979–993.

[20] E. Saravanakumar and P. Gomathy (2010)" A novel load balancing algorithm for computational
grid", Int. J. of Computational Intelligence Techniques, Vol. 1, No. 1, 2010.

[21] A. Touzene, H. Al Maqbali (2007) "Analytical Model for Performance Evaluation of Load
Balancing Algorithm for Grid Computing", Proc. of the 25th IASTED Inter. Multi-Conference:
Parallel and Distributed Computing and Networks, pp. 98-102.

[22] Y. Wu, L. Liu, J. Mao, G. Yang, and W. Zheng (2007) " Analytical Model for Performance
Evaluation in a Computational Grid", Proc of the 3rd Asian Tech. Info. Program's (ATIP'S) on
High performance computing: solution approaches to impediment performance computing, pp.
145-151.

[23] J. Balasangameshwara, N. Raju (2010) "A Decentralized Recent Neighbour Load Balancing
Algorithm for Computational Grid", Int. J. of ACM Jordan, Vol. 1, No. 3, pp. 128-133.

[24] A. Touzene, S. Al Yahia, K.Day, B. Arafeh (2005) "Load Balancing Grid Computing
Middleware", IASTED Inter. Conf. on Web Technologies, Applications, and Services, pp. 29-34.

[25] Arena simulator <http://www.ArenaSimulation.com>
[26] Zikos, S., Karatza, H.D. (2008). "Resource allocation strategies in a 2-level hierarchical grid

system", In: Proceedings of the 41st Annual Simulation Symposium (ANSS), April 13–16, 2008.
IEEE Computer Society Press, SCS, pp. 157–164.

Authors

Dr. Said Fathy El-Zoghdy Was born in El-Menoufia, Egypt, in 1970. He received the
BSc degree in pure Mathematics and Computer Sciences in 1993, and MSc degree for
his work in computer science in 1997, all from the Faculty of Science, Menoufia,
Shebin El-Koom, Egypt. In 2004, he received his Ph. D. in Computer Science from the
Institute of Information Sciences and Electronics, University of Tsukuba, Japan. From
1994 to 1997, he was a demonstrator of computer science at the Faculty of Science,
Menoufia University, Egypt. From December 1997 to March 2000, he was an assistant
lecturer of computer science at the same place. From April 2000 to March 2004, he
was a Ph. D. candidate at the Institute of Information Sciences and Electronics,
University of Tsukuba, Japan, where he was conducting research on aspects of load
balancing in distributed and parallel computer systems. From April 2004 to 2007, he
worked as a lecturer of computer science, Faculty of Science, Menoufia University,
Egypt. From 2007 until now, he is working as an assistant professor of computer science
at the Faculty of Computers and Information Systems, Taif University, Kingdom of
Saudi Arabia. His research interests are in load balancing in distributed/parallel systems,
Grid computing, performance evaluation, network security and cryptography.

http://www.ArenaSimulation.com

