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ABSTRACT

We propose a Cooperative Rate Adaptation (CRA) MAC protocol based on the standard CSMA/CA proto-
col used in IEEE 802.11 wireless networks. The proposal provides cooperative error recovery, namely co-
operative packet retransmission, while using rate adaptation. The transmission rate is selected based on
the transmission rate history of the neighbours. The cooperating partner is selected based on a fuzzy logic
selection algorithm. Three inputs are considered in the fuzzy system: the average transmission rate of a
neighbour, the erroneous packet ratio and the acknowledged packet ratio of a neighbour. The output of the
fuzzy system is the partnership probability of a neighbour. In this paper, the protocol is compared to the
non-cooperative rate adaptation scheme RBAR (Receiver Based Auto Rate) and to the cooperative rate
adaptation scheme CRBAR (Cooperative Relay Based Auto Rate). The simulation results show that the
proposed protocol improves the delay and packet delivery ratio while contributing to the transmission op-
portunity fairness among the terminals, regardless of their channel conditions.
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1. INTRODUCTION

Nowadays, there are more and more electronic devices connected to a wireless network. The most
common standard used in wireless networks is the IEEE 802.11 standard [1]. This standard de-
fines a Distributed Coordination Function (DCF) for accessing the medium based on the Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol at the Media Access Con-
trol layer (MAC). In this protocol, when a station has a packet to transmit, it has to sense the
channel idle for a DIFS (DCF Interframe Space) period and then decreases a backoff counter.
However, terminals experiencing a transmission error have to double their contention window,
which reduces their transmission probability. Consequently, the network is mostly used by termi-
nals with low transmission error probability. Given that most transmission errors are the result of
dire channel conditions, one can conclude that the current protocol treats unfairly terminals on the
basis of their channel conditions.

In order to reduce transmission error probability in terminals with low Signal-To-Noise ratio
(SNR), rate adaptive solutions have been investigated [3], [4]. Despite the signal’s robustness

mailto:verotiana@gmail.com
mailto:musica@gmail.com
mailto:hieusdc@gmail.com
mailto:student@gmail.com
mailto:shima@waseda.jp


International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.1, January 2012

14

offered by rate adaptation, low data rate transmissions of terminals in bad channel conditions take
a long time, thus affecting the network’s performances. As an alternative solution, cooperation
between terminals has been proposed. Basically, several copies of the same data are transmitted
from different stations to achieve spatial diversity [5]-[10]. Recently the merging of rate adapta-
tion with cooperation has been investigated [14]-[16]. The results are higher transmission rates
and a diversity gain but the problem of wasteful duplicate transmissions is not addressed while
signaling to find the right partner adds overhead. The proposal in [18] alleviates this issue by
triggering cooperation in absence of an ACK. However the waiting for the absence of an ACK
and the contention among the relay candidates increase the network latency and induce a collision
probability. The authors in [19] present a Cooperative Relay Based Auto Rate (CRBAR) MAC
protocol based on RBAR [4].

Focusing on the relay selection issue and on error recovery, we previously proposed a Partner-
ship-based cooperative protocol with a fix random partner assignment [11]. In [12], we presented
a low complexity dynamic partner selection scheme based on the SNR. More recently we pro-
posed a CSMA/CA-based cooperative MAC protocol employing a fuzzy logic partner selection
scheme. However, the fuzzification is determined based upon a 54 Mbps transmission rate.
Therefore, this protocol does not consider rate adaptive networks and the consensus-based partner
selection scheme increases the overhead [13].

In this paper, we propose a Cooperative Rate Adaptation (CRA) MAC protocol for an 802.11
WLAN based on the CSMA/CA protocol. CRA provides cooperative error recovery while using
rate adaptation. It avoids the wasteful duplicate transmissions when the first transmission is suc-
cessful. It aims to alleviate the latency and collision issues existing in previous works on coopera-
tive networks and rate adaptation by eliminating contention among neighbour terminals. Through
error recovery, it tackles the fairness issue of CSMA/CA towards the terminals with dire channel
conditions. The error recovery allows a terminal with bad channel conditions to keep a minimum
contention window size if the cooperative retransmission succeeds. Besides, it implements a ro-
bust partner selection scheme by considering not only the transmission rate but also the link
quality between neighbour terminals, the source and the destination. Cooperation is triggered by
the destination only if the packet transmission has failed and the partner is selected by the source.
Finally, the packets used in the proposal conform to the standard format.

The rest of this paper is organised as follows: We present the related work RBAR and CRBAR in
Section 2. Section 3 offers the Cooperative Rate Adaptation protocol description. Section 4 de-
scribes the partner selection scheme. The proposal is evaluated and the results are discussed in
Section 5. We conclude in Section 6.

The following notations will be used throughout this paper:
I-J: channel or link between the terminals I and J
RI−J: data transmission rate used on the link I-J

2. RBAR AND CRBAR

2.1. Receiver Based Auto Rate (RBAR) [4]

In RBAR, the source begins the communication with an RTS conveying its predicted transmis-
sion rate and the packet size instead of the duration field. Upon reception of the RTS, the receiver
estimates the SNR and selects the transmission rate accordingly. Then, the receiver conveys the
selected transmission rate in the CTS. The source confirms the rate selection in a Reservation
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SubHeader (RSH) of the data packet. Finally, the receiver ends the communication with an ACK.
A threshold-based technique is used for the rate selection algorithm. The chosen rate is the high-
est transmission rate that allows a bit error rate (BER) lower than 10−05. Let M1, …, MN be the
modulation schemes corresponding to the available transmission rates. θ1, …, θN are the SNR
threshold at which BER(Mi) = 10−05; i = 1, … , N.

The selected modulation scheme is presented in equation (1).

M if SNR < θM if θ < < θM otherwise (1)

2.2. Cooperative Relay Based Auto Rate (CRBAR) [19]

In CRBAR, communication begins with a RTS containing the packet length from the source. The
destination replies with a CTS. The neighbors estimate the SNR of the RTS and the CTS. They
use this information to determine the source-neighbor transmission rate and the neighbor-
destination transmission rate. The transmission rates are determined in the same way as in [4]
described in (1). The neighbors use the packet length and the selected transmission rates to calcu-
late the time needed for a transmission without relay (direct transmission time) and the time
needed for a transmission with a relay (cooperative transmission time). If the cooperative trans-
mission time is shorter than the direct transmission time, the neighbour will contend to send a
Ready to Relay (RTR). However, short transmission duration does not ensure a successful com-
munication and contention among the relay candidates increases the delay and may induce colli-
sions.

3. COOPERATIVE RATE ADAPTATION MAC PROTOCOL

3.1. Potential Partner Table

Each station holds a Potential Partner Table (PPT). The PPT contains the information about the
neighboring terminals. Every station listens to the ongoing communications in order to fill up the
PPT. A neighbor N’s entry in the station S’s PPT comprises an Error Ratio (ER) field, an Acked
Ratio (AR) field, an Average Rate (AvgR) field and a Partnership Probability (PP) field. The de-
termination of ER, AR, AvgR and PP is described later in the paper. There is also a SNR field
that contains the SNR estimate of the last packet received from N. Finally there is the transmis-
sion rate RS−N for a transmission from S to N based on SNR and the last transmission rate RN−AP

used by N to transmit to the access point (AP). The PPT is updated every time a data packet or an
ACK is overheard. The neighbors are sorted from the highest to the lowest PP. If two terminals
have the same PP, the one with the highest AvgR comes first in the PPT. Therefore, the first
neighbor listed in the PPT is the one with the most reliable S-N and N-AP links and the highest
transmission rate on those links. Fig.1 depicts an example of partner selection.
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Figure 1. Example of partner selection

3.2. Protocol Description

The proposed MAC protocol is based on the CSMA/CA protocol used in the IEEE 802.11 stand-
ard. A station S initiates communication by sending a RTS frame to the access point (AP) after
sensing the channel idle for a DIFS period. It includes the address of the first neighbour listed in
its PPT in an unused address field as the selected partner in case of error. The AP replies with a
CTS frame followed by the data packet transmitted by S. Before the data transmission, S selects
the direct transmission rate RS−AP based on the CTS’s SNR. S calculates the direct transmission
time Tdir when it transmits with RS−AP. S also calculates the cooperative transmission time Tcoop

when it transmits a packet with RS−N and the partner retransmits with RN−AP. RS−N and RN−AP are
found in the PPT. If Tdir < Tcoop, S transmits with RS−AP, otherwise it transmits with RS−N. The cal-
culation of Tdir and Tcoop is given in equations (2) and (3) respectively.T = T (R ) + T + SIFS (2)T = T (R ) + T + T (R ) + T + (3 × SIFS) (3)
with

TDATA(RI-J): data transmission duration with the rate RI-J

TCTRL: control packet transmission duration (ACK or RTC)
SIFS: Short Interframe Space

The rate selection is performed according to the estimated SNR in the same way as in [4] and
[19] described in equation (1). The data transmission rate selection is depicted in Fig. 2. If the
packet is not received correctly, AP triggers cooperation by sending a RTC (Request to Cooper-
ate) packet. The RTC contains the basic mandatory fields of a MAC frame in the 802.11 standard.
It comprises the address of the source of the packet S and the address of the chosen partner for-
mally conveyed in the RTS frame. The partner selects the retransmission rate according to the
estimated SNR of the RTC as in [4], [19]. The AP ends the session with an ACK packet. At the
beginning of the transmission sequence, the NAV is set to the duration of a successful transmis-
sion and is updated in the RTC in case of error. This frame sequence is depicted in Fig.3.

Note that in contrast with the RBAR scheme in [4] and the CRBAR scheme in [19] where the
frame formats have been modified, here, all the frame formats follow the standard general frame
format[1]. The partner is selected by the source and conveyed in the RTS packet. Therefore, there
is no risk of collision among the neighbours and there is no need to wait for an ACK-timeout pe-
riod in order to know that an error occurred. The RTC avoids the wasteful cooperation attempts
by hidden terminals who may not detect the ACK. In the standard CSMA/CA, when a packet is
not received successfully, the source has to go through contention against all the terminals in the
network with an increased contention window size, thus there is no guarantee of an immediate
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retransmission. With the cooperative MAC protocol, the retransmission is performed right after
the error occurred. If cooperation succeeds, the contention window size of the source remains to
the minimum. If the RTC is not received correctly by the partner or if the retransmission fails, the
source reverts to the CSMA/CA for the subsequent retransmissions. The proposed protocol pro-
vides erroneous packet recovery therefore a successfully transmitted packet does not need re-
transmission.

R e c e iv e  C T S

E s tim a te  S N R C T S a n d  s e le c t R S -A P

C a lc u la te  T d ir a n d  T c o o p

T d ir < T c o o p

T x _ ra te = R S - A P T x_ ra te = R S -N

T ra n s m i t D A T A

Y E S N O

Figure 2. Transmission rate selection

Figure 3. Frame sequence of the cooperative MAC protocol

4. FUZZY LOGIC PARTNER SELECTION SCHEME

4.1. Membership Functions

Fuzzy logic is an engineering technique used in neural networks or experts systems to name a
few. As opposed to crisp logic or two-valued logic, fuzzy logic assumes a multivalued logic. A
variable can be represented by several linguistic values. The variable has a membership degree to
their membership functions [20][21]. Our fuzzy system considers three inputs: the erroneous
packets ratio, the acked packets ratio and the average transmission rate used by a neighboring
terminal. The output of the system is the partnership probability. These parameters are explained
in detail in the following subsections. By using the erroneous packets ratio and the acked packets
ratio a terminal can estimate the channel quality between itself and a neighbour and between that
neighbour and the access point. The fuzzy system is depicted in Fig.4.
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Figure 4. Fuzzy system

4.1.1. Erroneous Packets Ratio

In order for a neighbor N to be able to retransmit a packet from the source S, first of all it has to
be able to receive the packet successfully. Therefore, the channel between S and N has to be reli-
able. To evaluate the S-N link quality we use the erroneous packets ratio or error ratio ER. It is
the ratio of the number of the packets that have not been received correctly from a neighbor N to
the total number of packets received from N. ER is given by (4):ER = (4)

with:
NErr: the number of erroneous packets from N
NRx: the number of all the received packets from N

This information helps to determine the ability of the neighbor N to receive successfully a packet
from S. The fuzzified ER has three linguistic values: FzER = {low, fair, high}. We use triangular
fuzzy membership functions (MF) [20][21] to represent the linguistic values. Since ER is a ratio,
it ranges in the interval [0, 1] and the threshold values used to build the MF of low, fair and high
are 0, 0.5 and 1. The MF are given in (6), (7) and (8) respectively.

4.1.2. Acked Packet Ratio

For a successful cooperative packet retransmission from a neighbor N to the AP, the N-AP chan-
nel also has to be reliable. To estimate the quality of the N-AP link, the acked packets ratio or
acked ratio AR is used. AR is the ratio of the number of ACK received after a packet transmis-
sion from a neighbor N out of the number of packets received from N as expressed in (5).AR = (5)

with:
NACK: the number of acked packets of N
NRx: the number of all the received packets from N

In order to make the calculation of this metric possible and to maximize the successful ACK
transmissions, all the ACKs are transmitted at the lowest rate (6 Mbps). AR informs about the
average channel quality between N and the access point N-AP. As AR is also a ratio, its fuzzified
form is defined as FzAR={low, fair, high} and its MF are defined in the same way as FzER as
seen in (6), (7) and (8).µ (x) = if low < ≤ fairµ (x) = 0 if fair < ≤ high (6)
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μ (x) = if low < ≤ fairμ (x) = if fair < ≤ high (7)

μ (x) = 0 if low < ≤ fairμ (x) = if fair < ≤ high (8)

where x represents the error ratio, the acked ratio or the partnership probability and ,
and are the thresholds of low, fair and high.

4.1.3. Average Transmission Rate

The last input of the fuzzy system is the average transmission rate AvgR used to find the neighbor
with highest transmission rate. The AvgR of a neighbor N is the ratio of the sum of the transmis-
sion rates used by N for each data transmission to the total number of packets received from N
and is given by (9). AvgR = ∑ _

(9)

with:
Tx_rates: the transmission rates used by N
NRx: the number of all the received packets from N

The transmission rate used by N can be found in the PLCP header of a packet [1]. The fuzzified
AvgR is FzAvgR = {low, high}. CRA uses the data rates available in the 802.11a PHY ranging
between 6 and 54 Mbps. Therefore, the thresholds are 6 and 54 and the MF are given in (10) and
(11). Note that we only define two membership functions for AvgR. This reduces the complexity
of the system without affecting the partner selection since the main criteria to choose a partner are
the Source-Neighbor S-N channel quality and the Neighbor-Access Point N-AP channel quality
given by ER and AR respectively. Nevertheless, we consider the transmission rate in the system
in order to find the neighbor with the most reliable S-N and N-AP channels and with the highest
transmission rate possible.μ (x) = __ _ if low_rate < ≤ high_rate (10)

μ (x) = __ _ if low_rate < ≤ high_rate (11)

where x represents the average transmission rate. _ and _ are the MF
thresholds of low and high.

4.1.4. Partnership Probability

The Partnership Probability PP is the output of the fuzzy system. The fuzzified PP is FzPP =
{low, fair, high}. Since PP is a probability, it ranges between 0 and 1. Note that ER, AR and PP
range between the same interval [0, 1]. Besides they are represented by the same linguistic values
low, fair and high. Therefore ER, AR and PP have the same membership functions given by (6),
(7) and (8).
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4.2 Inference Rules and Defuzzification

Once we have the fuzzified inputs, we fire the inference rules given in Table 1 to obtain the fuzzi-
fied PP. The conventional way to define the inference rules in a fuzzy logic system is using the
Intersection Rule Configuration (IRC) method. In this method, if we have F fuzzy inputs with L
linguistic values each, we have FL rules. However, according to the data and the requirements of
the system designer, the rules number can be reduced [21].

A neighbor N is a good partner if the S-N link and the N-AP link are both good since it is likely
that N will be able to receive a packet from S and to forward it to AP successfully. If either of
these links is in bad condition, the cooperation is likely to fail. This explains the rules R1 and R2.
If both the links are fairly good, the partner is fairly good as well (R3). Note that the three first
rules stand regardless of the average transmission rate. However, we use the average transmission
rate to distinguish the good partners from the fairly good ones when one of the S-N and N-AP
links is good and the other is fairly good (R4, R5). We use the Zadeh min-max method [20] for
the AND (&&) and OR (||) operators in the inference rules. There are several defuzzification
methods. The most commonly used method is the centroid method also called center-of-gravity
method. After firing the rules, the fuzzified PP is deffuzified using the centroid method given in
equation (12) [20][21]. PP = ∑ ( )× ( )∑ ( ) (12)

with:
xmax(FzVali): the crisp input corresponding to the maximum of the membership function of FzVa-
li.
FzVali(μx): the membership degree to the fuzzy value FzVali

L: the number of linguistic values of the variable, here 3 (low, fair, high)

Table 1. Inference rules

5. EVALUATION

5.1 Simulation Setup

The proposed protocol is evaluated by simulation using the ns3 network simulator [23]. There are
8 transmission rates available: 6, 9, 12, 18, 24, 36, 4 and 54 Mbps as in 802.11a. The communica-
tions are performed between the terminals and the AP. The stations are randomly spread in a cir-
cular area. The AP is in the center of the simulation area. The control frames (RTS, CTS, ACK,
RTC) are transmitted at the minimum rate (6Mbps). In our simulations, the signals suffer from
the log-distance path loss and the path loss exponent is 3. All the terminals are mobile. They can
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move in every direction in the plane and the direction is updated every 5s. The stations generate
packets of 1500 bytes based on an OnOffApplication available in ns3. The OnOffApplication
allows the terminal to generate packets in flows and inter-flows [23]. The flow and inter-flow
durations follow the exponential distribution. During the flows, the packets are generated at a
constant rate 1Mbps. If the cooperative retransmission fails, the source of the packet reverts to the
CSMA/CA protocol and retransmits the packet on its own. The packet is discarded if the SLRC
(Station Long Retry Counter) reaches the long retry limit set to 7. We simulate different scenarios
to evaluate the influence of different parameters such as the number of terminals, the area size
and the terminals speed, on the network performances. The Cooperative Rate Adaptation (CRA)
MAC protocol is compared to a non-cooperative and a cooperative rate adaptation schemes. Since
we use the same rate selection method as in [4] and [19], we choose the proposed schemes there-
in: Receiver Based Auto Rate (RBAR) and Cooperative Relay Based Auto Rate (CRBAR) re-
spectively.

5.2 Results and Discussion

In the first scenario, we have a circular area of 150m diameter. The stations move at a speed be-
tween 0 and 4m/s. We evaluate the influence of the density by varying the number of terminals.
Since our protocol’s main objective is to provide error recovery, the first metric we evaluate is the
average packet delivery ratio (Avg PDR). The Avg PDR is the ratio of the packets successfully
received at the destination out of the all the packets transmitted.

Fig.5 depicts the Avg PDR of the three protocols with respect to the number of terminals. Coop-
erative retransmissions noticeably reduce the number of lost packets. When the density is low, the
number of potential partners is also low. However the retransmission rate selection based on the
SNR of the RTC maximizes the chances for a successful error recovery. As the number of termi-
nals increase, the number of potential partners increases too. This yields an Avg PDR around
99% when CRA is used, regardless of the density. In contrast, the Avg PDR of RBAR and
CRBAR increase gradually with the density and reach a more or less stable Avg PDR around
74% and 80% respectively when there are more than 60 stations. Due to its cooperative feature,
CRBAR offers a greater Avg PDR than RBAR.

Figure 5. Average Packet Delivery Ratio vs Number of Terminals
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Figure 6. Throughput vs Number of Terminals

However the graph shows that a partner selection based only the transmission rate is not enough
to provide successful cooperation since a high transmission rate does not ensure a successful co-
operation. CRA takes into account the S-N and N-AP channel quality, which leads to a more ro-
bust partner selection and a higher Avg PDR than CRBAR. Fig.6 shows that the throughput in-
creases with the density when RBAR and CRBAR are used. CRA’s throughput increases until it
reaches a relatively constant throughput around 16Mbps and is outperformed by RBAR and
CRBAR. When the density increases, the transmissions from the good stations increasingly out-
number the transmissions from the bad stations yielding to the RBAR and CRBAR increasing
throughput.

In the second scenario we evaluate the influence of the size of the area when there are 50 termi-
nals moving at a speed between 0 and 4m/s. Fig.7 shows the average transmission delay and the
throughput with respect to the area diameter. The transmission delay is the time elapsed between
a RTS transmission and the reception of the corresponding ACK. As a result, the more errors and
retransmissions, the longer this duration. As the area widens, the transmission delay increases and
the throughput decreases for all protocols.

Figure 7. Average Transmission Delay and Throughput vs Plane Diameter
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With CRA, when cooperation is successful this duration is equal to twice the transmission dura-
tion of the packet at the lowest rate (6Mbps) and the overhead (control packets and SIFS) at most.
Consequently, CRA offers a transmission delay greatly shorter than RBAR and CRBAR. When
RBAR and CRBAR are used, the terminals with dire channel conditions will experience a higher
delay, therefore the average transmission delay becomes higher for these protocols. As a result,
the low delay offered also shows the fairness provided by CRA. When the diameter is small, there
are less errors, cooperation becomes useless and the overhead caused by CRA and CRBAR in-
duce a lower throughput compared to RBAR. As the area widens, CRA experiences smoother
throughput decay and outperforms the other protocols. As described in Sect.2.2, CRBAR pro-
vides a cooperative transmission at higher rates whenever it can be performed faster than the di-
rect transmission. However, high transmission rates do not guarantee successful transmissions. As
a result, multiple retransmissions due to errors affect the throughput and the transmission delay of
CRBAR.

Finally, we evaluate the robustness of the protocol against the stations mobility. There are 50
terminals spread in a 150m diameter circular area and all the stations move at the same constant
speed. Fig.8 illustrates the Avg PDR and the throughput with respect to the station speed. When
the speed increases, the channel changes more frequently, the transmission rate selection becomes
more difficult and the Avg PDR and the throughput decrease. At lower speed, the transmission
rate selection becomes more accurate yielding more successful transmissions. As a result, the
overhead induced by CRA yields a throughput lower than that of RBAR and CRBAR. However,
the partner selection relies not only on the transmission rate but also on the overall links reliabil-
ity. Consequently, with its robust partner selection, CRA’s throughput outperforms that of RBAR
and CRBAR when the speed increases. Besides, CRA also provides a smoother decay of the Avg
PDR maintaining it to high level and the improvement compared to RBAR and CRBAR increases
with the station speed. This is because RBAR and CRBAR select the transmission rates at the
beginning of the transmission sequence and do not consider the channel variation throughout the
packet exchanges. In contrast, the partner selects the retransmission rate upon reception of the
RTC packet. The SIFS between a RTC and the retransmitted packet lasts 16μs, it is greatly small-
er than the coherence time even when the terminals move at 4m/s, therefore the rate selection is
more accurate and the retransmission has more chances to succeed.

Figure 8. Average Packet Delivery Ratio and Throughput vs. Terminal Speed
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6. CONCLUSION

We proposed a Cooperative Rate Adaptation (CRA) MAC protocol. The partner is selected con-
sidering the source-neighbor (S-N) and the neighbor-access point (N-AP) link reliability and con-
sidering the average transmission rate of the neighbor. These metrics are used in a fuzzy logic
system and the output of the system is the Partnership Probability of a neighbor. Every station
holds a Potential Partner Table and the chosen partner is the first neighbor listed in the table. The
cooperative MAC protocol is based on the standard CSMA/CA used in IEEE 802.11 wireless
networks and all the frame formats conform to the standard frame format. The protocol is com-
pared to a non-cooperative and a cooperative rate adaptation schemes: the RBAR (Receiver
Based Auto Rate) and the CRBAR (Cooperative Receiver Based Auto Rate) respectively. The
cooperative retransmission of erroneous packets in CRA leads to a noticeable improvement in the
average packet delivery and the average delay compared to CRBAR and RBAR. The comparison
between the performances of CRA and CRBAR show that the transmission rate is not enough to
select an efficient partner and our fuzzy logic selection scheme improves greatly the performanc-
es. By selecting the retransmission rate right before cooperation, CRA helps to maintain good
performances when the terminals move faster. Despite a lower throughput under some conditions,
the results show that CRA offers great improvement in the average packet delivery ratio, trans-
mission delay while providing fairness with respect to the density, the area width and the stations
mobility.
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