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ABSTRACT 

It has been revealed in the literature that pure multipoint relaying (MPR) algorithms demonstrate both 

simplicity and outstanding performance, as compared to other flooding algorithms in wireless networks. 

One drawback of pure MPR algorithms is that the selected forwarding set may not represent the 

optimum selection. In addition, little efforts have been carried-out to investigate the performance of such 

algorithms in noisy mobile ad hoc networks (MANETs) suffering from high packet-loss and node 

mobility. In this paper, we develop and evaluate the performance of an optimal MPR (OMPR) algorithm 

for route discovery in noisy MANETs. The main feature of this new algorithm is that it calculates all 

possible sets of multipoint relays (MPRs) and then selects the set with minimum number of nodes. The 

algorithm demonstrates an excellent performance when it is compared with other route discovery 

algorithms as it achieves the highest cost-effective reachability.  
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1. INTRODUCTION 

A routing protocol is part of the network layer software that is responsible for deciding which 

output path a packet should be transmitted on. Many routing protocols have been proposed for 

MANETs [1, 2]. These algorithms differ in the approach they use for searching a new route 

and/or modifying a known route, when nodes move. Furthermore, each of the available routing 

algorithms has its own unique characteristic strengths and weaknesses. 

Routing protocols can be classified into different categories according to their properties and 

applications [2]. The most widely used mechanism for categorizing routing protocols is the one 

that is based on routing information update, which according to it, routing protocols can be 

classified into three major categories, these are proactive (static), reactive (dynamic) routing 

protocols, and hybrid routing protocols [1-4]. 

Reactive protocols consist of two main phases: route discovery and route maintenance. Route 

discovery is the process that allows a node in a network to dynamically discover a route to 

other nodes in the network, either directly within the wireless transmission range, or through 

one or more intermediate nodes [5]. Reactive protocols such as dynamic source routing (DSR) 

[2], ad hoc on-demand distance vector (AODV) [3], zone routing protocol (ZRP) [4], and 

location aided routing (LAR) [5], or variations of them are widely used in MANETs. 

It is usually assumed that the cost in terms of bandwidth and power consumptions and delay of 

information exchange during route discovery, when the knowledge of the route is imperfect, is 

higher than the cost of point-to-point data forwarding after that knowledge has been acquired. 

Therefore, the process of route discovery should be done with minimum complexity, overhead, 

and bandwidth and power consumption [6]. 
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Route discovery is used when a source node desires to send a packet to some destination node 

and does not already have a valid route to that destination; in which the source node initiates a 

route discovery process to locate the destination. It broadcasts a route request (RREQ) packet 

to its neighbours, which then forward the request to their neighbours, and so on until the 

expiration of the RREQ packet. During the forwarding process, the intermediate nodes record 

in their route tables the address of the node from which the first copy of the broadcast packet is 

received. Once the RREQ reaches the destination, the destination responds with a route reply 

(RREP) packet back to the source node through the route from which it first received the 

RREQ [1]. 

Pure flooding is one of the earliest, simplest, and reliable mechanisms proposed in the literature 

for route discovery in MANETs [7-9]. In pure flooding, each node rebroadcasts the message to 

its neighbours upon receiving it for the first time, starting at the source node. Although it is 

simple and reliable, pure flooding is costly where it costs n transmissions in a network of n 

reachable nodes. In addition, pure flooding in wireless networks, using the IEEE 802.11 

protocol, results in serious redundancy, contention, and collisions in the network; such a 

scenario has often been referred to as the broadcast storm problem [10]. 

To eliminate the effects of broadcast storm problem during route discovery in MANETs, a 

variety of flooding optimization algorithms have been developed, such as multipoint relaying 

(MPR) [11-16], probabilistic [7-9], counter-based [10], distance-based [10], locations-based [5, 

10], and cluster-based [17, 18] algorithms. They all try to limit the number of collisions by 

limiting the number of retransmissions. As the number of retransmissions required for 

broadcasting is decreased, the bandwidth is saved and contention and node power consumption 

are reduced, and this will improve the overall network performance.  

In this work we will focus on MPR algorithms for flooding optimization during route discovery 

in MANETs. The basic idea behind MPR algorithms is to define a set of nodes called MPRs or 

relay nodes for each node in the network; these relay nodes are a subset of the one-hop 

neighbors of the node. They are responsible for forwarding the RREQ packet upon receiving it 

for the first time, while non relay nodes will not forward the message, so that the packet will be 

propagated to the whole network to maintain the highest possible reachability with less number 

of retransmissions.  

Different heuristics have been developed in the literature to select the set of relay nodes in 

MPR algorithms. According to the heuristic that is used, MPR algorithms can be categorized as 

pure MPR algorithms connected dominating set MPR (CDS-MPR) algorithms, or quality-of-

service MPR (QoS-MPR) algorithms [11]. 

It has been revealed in the literature that pure MPR algorithms demonstrate both simplicity and 

outstanding performance, as compared to other flooding algorithms that are commonly used in 

wireless networks. One drawback of pure MPR algorithms is that the selected forwarding set 

may not represent the optimum selection. In addition, little efforts have been carried-out to 

investigate the performance of such algorithms in noisy MANETs suffering from high packet-

loss and node mobility.   

In this paper, we develop a new heuristic for selecting the optimal MPRs set to forward RREQ 

packets during route discovery in noisy MANETs. Therefore, this MPR algorithm is referred to 

as optimal MPR (OMPR) algorithm. A noisy MANET is characterized by its high packet-loss, 

which is expressed in terms of probability of reception. Probability of reception is defined as 

the probability of a packet being successfully received by adjacent nodes. In order to evaluate 

the performance of the OMPR algorithm, a number of simulations were simulated using the 

MANET simulator (MANSim) [19, 20]. The simulations were aimed to estimate the variation 

of number of retransmissions (RET) and network reachability (RCH) with probability of 

reception. In addition, in this paper, the performance of the OMPR algorithm is compared 

against other flooding optimization algorithms, such as: pure flooding [7], probabilistic 

flooding [7, 8, 9], LAR-1 [5], and LAR-1-probabilistic (LAR-1P) [21] algorithms. 
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The rest of the paper is organized as follows. Related work is discussed in Section 2. The 

wireless network environments are defined in Section 3. The concept, cost, and the algorithm 

for selecting the MPRs in pure MPR algorithm are given in Section 4. The proposed heuristic 

for selecting the optimum MPRs and the algorithm main features are presented in Section 5. 

Results of the simulations are presented and discussed in Section 6. Finally, in Section 7, 

conclusions are drawn and recommendations for future work are pointed-out. 

2. LITERATURE REVIEWS 

In this section, we review some of the research activities and development stages that are 

related to the MPR algorithms. Self and dominant pruning flooding methods was proposed in 

[22]. An approach to optimize the performance of flooding broadcast in multi-hop ad hoc 

networks, namely, the lightweight and efficient network-wide broadcast (LENWB) protocol, 

was proposed in [27]. 

A proactive routing protocol for MANETs, namely, the optimized link state routing (OLSR) 

protocol that employs periodic exchange of messages to maintain topology information of the 

network at each node was developed and evaluated in [15, 16]. OLSR uses the MPR technique 

to efficiently and economically flood its control messages and it provides optimal routes in 

terms of number of hops, which are immediately available when needed. The protocol is best 

suitable for large and dense MANETs. In [14], pure MPR algorithm for flooding broadcast 

optimization in mobile wireless networks was developed and analyzed, which showed an 

excellent performance in sparse networks.   

An efficient ad hoc broadcast protocol (AHBP) similar to MPR was developed in [24]. In 

AHBP, all nodes need to know about their one and two-hop neighbors, and only nodes that are 

selected as a broadcast relay gateway (BRG) within a broadcast packet header are allowed to 

rebroadcast the packet. The work in [25] showed that MPR can be used as well in reactive 

protocols in order to save overhead in route discovery. They specified a simple reactive 

protocol called MPR distance vector (MPRDV) protocol. In MPRDV RREQs and RREPs are 

all flooded via MPRs.  

An algorithm for computing MPRs, the Mini-ID MPR algorithm was described in [13]. The 

Mini-ID algorithm is far from optimal but it has the advantage that a node can detect by itself 

whether or not it belongs to the MPR set of a neighbor. It consists of selecting the nodes in the 

increasing order of their ID’s (or any arbitrary increasing order). They also proposed a CDS 

election algorithm based on MPR called (MPR-CDS). Unlike MPR, MPR-CDS algorithm does 

not require the last hop knowledge. The proposed algorithm requires a total ordering of the 

nodes. In this algorithm, a node decides that it is in the CDS if and only if the node is smaller 

than all its neighbors, or it is a MPR of its smallest neighbor. They compared MPR-CDS with 

MPR algorithm described in [14]; the percentage of forwarding nodes in MPR algorithm was 

fewer than that in MPR-CDS by a minor amount.  

In [11], the performance of a number of MPR algorithms was evaluated. The conclusions were: 

MPR based broadcasting schemes provide different features based on different MPR selection 

criteria that can be customized to obtain different broadcast performances as required. A 

gateway MPR (GMPR) algorithm was proposed in [26]. The simulation results showed that 

GMPR produces a smaller size CDS than the source-independent MPR in both sparse and 

dense networks. Also, an enhanced approach to the GMPR to further reduce the CDS size was 

presented in [27]. In [12] several extensions to generate smaller CDS were suggested. A 

comparison between the performance of MPRs and network coding (NC) algorithms was given 

in [28]. The comparison demonstrated that NC algorithm does not bring any benefits in terms 

of RET when compared to MPR algorithm. 
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3. WIRELESS NETWORK ENVIRONMENT 

The wireless network environment can be categorized, according to the presence of noise or 

packet-loss, into two types of environments; these are [20]:  

(1)  A noiseless (error-free) environment, which represents an ideal network environment, 

in which it is assumed that all data transmitted by a source node is successfully and 

correctly received by a destination node. It is characterized by the following axioms or 

assumptions: the world is flat, all radios have equal range, and their transmission range 

is circular, communication link symmetry, perfect link, signal strength is a simple 

function of distance. 

(2)  A noisy (error-prone) environment, which represents a realistic network environment, 

in which the received signal will differ from the transmitted signal, due to various 

transmission impairments, such as: wireless signal attenuation, free space loss, thermal 

noise, atmospheric absorption, multipath effect, refraction. 

All of these impairments are represented by a generic name, noise, and the environment is 

called noisy environment. For modeling and simulation purposes, the noisy environment can be 

described by introducing a probability function, which referred to as the probability of 

reception (pc). It is defined as the probability that a wireless transmitted data is survived being 

lost and successfully delivered to a destination node despite the presence of all or any of the 

above impairments. 

4. MPR ALGORITHMS 

4.1. Concept of the MPR Algorithms 

The idea behind MPR algorithms is to define, for each node in the network, a set of nodes 

called MPRs or simply relay nodes, these relay nodes are a subset of the one-hop neighbors of 

the node, which can establish communication paths with all two-hop neighbors. They are 

responsible for forwarding the broadcast message (e.g., RREQ packet) upon receiving it for the 

first time, while non relay nodes will not forward the message. The set of MPRs or relay nodes 

of a particular node (x) is referred to as MPR(x) [25, 14].  

The number of relay nodes in MPR(x) is variable and it depends on the network topology, 

obviously it is less than or equal the number of one-hop neighbors. When the relay nodes are 

the same as the one-hop neighbors then this is pure flooding. 

MPR algorithms require that each node knows the full list of its one-hop neighbor nodes (N1(x)) 

and its two-hop neighbor nodes (N2(x)). This information is collected via the periodic HELLO 

messages transmitted by mobile nodes. The HELLO messages contain the list of the one-hop 

nodes heard by the originator of the HELLOs. So that each node by collecting these HELLO 

messages can identify its one- and two-hop neighbor nodes, i.e., N1(x) and (N2(x)). 

Figure 1 illustrates how does an MPR algorithm works in a regular-geometry and noiseless 

environment. It shows that to diffuse a packet to the three-hops neighbors, a source node 

uniformly surrounded by 8, 16, and 24 one-, two-, three- hops neighbors, respectively, pure 

MPR algorithm needs 11 retransmissions as compared to 24 for pure flooding [14]. 

It can be clearly seen from Figure 1 that an MPR algorithm may reduce the number of 

redundant retransmissions at no cost of the network reachability. However, with high 

transmission errors, some of the forwarding nodes may not receive the packet due to a 

transmission error; this may result in a failure of delivery of the broadcast packet to all nodes in 

the network. 
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Figure 1. Diffusion of broadcast packet using: (A) pure flooding. (B) MPR flooding.  

Figure 2A shows the use of MPR algorithms for flooding of a broadcast packet in a network 

that is characterized by a non-uniform node distribution and noiseless environment (pc=1), 

while Figure 2B shows the flooding of a broadcast packet using MPR in a noisy environment. 

If using pure flooding, nodes F, G and H will have a chance to receive the packet from either 

node A, B, or C. While, using MPR nodes F, G, and H will have a chance to receive the packet 

from node B only. Thus, in a noisy environment, if the link between the source S and B is 

broken, then nodes F, G, and H will be isolated and no data can be delivered to them. 

 

Figure 2. Flooding using MPR algorithm in noiseless and noisy environments. 

4.2. Costs of MPR Algorithms 

In order to calculate the forwarding nodes, a certain number of procedures and information are 

required. These requirements form the cost of the MPR selection algorithm. Four costs of MPR 

algorithms described as follows [11]: 

� Time complexity: is the time required to complete the forwarding nodes calculations. A 

heuristic that requires much time to run the calculation may be too complex to be 

deployed. Furthermore, when the network topology changes rapidly, the frequency of a 

forwarding node calculation also increases, and thus the time consumption of the 

calculation is huge for a complex heuristic. Hence, an efficient heuristic that consumes 

less time is essential for the MPR set generation. 

� Message complexity: is the number of HELLO messages required for the calculation of 

the MPR set. For any MPR scheme, a number of HELLO messages need to be 

exchanged between nodes in advance. These HELLO messages contain the necessary 

information for a heuristic to implement the forwarding node set calculation. Algorithms 

in different groups or even in the same group may require a different number of HELLO 

messages. However, frequent information exchange will consume the limited bandwidth 

in MANETs and also accelerate the energy consumption of mobile nodes. Therefore, the 
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number of HELLO messages exchanged, which is regarded as the message complexity, 

can significantly affect the performance of an MPR algorithm. 

� Information range: is the hop level of neighboring nodes information (i.e. two-hops, 

three-hops, etc.) needed for the calculation of MPRs. Generally, the larger information 

range an algorithm requires, the more time and message exchange it will need depending 

on the algorithm. For example, an information range up to four hops may not be efficient 

for an MPR algorithm because messages need a long time to be transmitted to the source 

node and the information they carry may be outdated by then.  

� Source dependant: in which a forwarding node need to know from which node the 

packet was received in order to determine whether or not to retransmit this packet. If an 

algorithm is not source dependant, a forwarding node will broadcast all messages that 

are received for the first time. This requirement increases the complexity of both the 

message sending and receiving process in an algorithm. 

4.3. Pure MPR Algorithm 

Pure MPR algorithm is designed to reduce the number of forwarding nodes and maintain the 

same network reachability, regardless of any other operation or optimization issues (e.g., QoS, 

reliability, power conservation, etc.). Therefore, the forwarding nodes selection heuristic is 

relatively simple. In addition, in pure MPR algorithm, using the neighbor-knowledge 

information obtained via periodic HELLO messages, each node can locally and independently 

calculate its own set of N1(x), N2(x) and MPR(x) nodes. Figure 3 outlines a simple pure MPR 

algorithm [14]. 

// The Heuristic Used for Selecting the MPRs in Pure MPR Algorithm 

For each node, after receiving HELLO messages from its neighbors, do: 

(1) Construct its own set of N1(x) and N2(x) nodes  

(2) Start with an empty MPR set MPR(x) 

(3) First select those one-hop neighbor nodes in N1(x) as MPRs which are the only neighbor of 

some node in N2(x), and add these one-hop neighbor nodes to MPR(x) 

(4) While there still exist some nodes in N2(x) which are not covered by MPR(x): 

a. For each node in N1(x) which is not in MPR(x), compute the number of nodes that it 

covers among the uncovered nodes in the set N2(x). 

b. Add the node of N1(x) to MPR(x) for which this number is maximum.  

Figure 3. The heuristic used for selecting the MPRs in pure MPR Algorithm [14]. 

To analyze the above pure MPR algorithm, first notice that step 3 permits to select some one-

hop neighbor nodes as MPRs which must be in the MPR(x) set. Otherwise the MPR(x) will not 

cover all the two-hop neighbors. These nodes will be selected as MPRs in the process, sooner 

or later. Therefore, if step 3 is omitted, the MPRs set can still be calculated with success, i.e., it 

will cover all the two-hop neighbors. The presence of step 3 is for optimizing the MPR set. 

Those nodes which are necessary to cover the two-hop set N2(x) are all selected in the 

beginning, which helps to reduce the number of uncovered nodes of N2(x) at the start of the 

normal recursive procedure of step 4. 

One drawback of pure MPR algorithm is that the selected forwarding set (i.e., MPR(x)) may not 

represent the optimum selection. This is because in step 4-a, there may be more than one nodes 

in N1(x) cover the same maximum number of nodes in N2(x). In step 4-b, one of nodes that 

covers this maximum number is selected, for example, by considering the node’s ID, which not 

enough to ensure the optimum selection. 
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5. THE PROPOSED OPTIMAL MPR (OMPR) ALGORITHM 

5.1. A New MPRs Selection Heuristic 

In this section, we describe a new heuristic for selecting the optimal MPR(x) set, which is the 

set that has the minimum number of forwarding nodes. An optimal MPR(x) set for a node is 

defined as a subset of the one-hop neighbors, which covers the two-hop neighbors of that node, 

and it has the minimum number of nodes among all other sets that cover the two-hop neighbors 

of the node.  

The new heuristic can be summarized as follows: in step 4-b in Figure 3, if more than one 

nodes in N1(x) can cover the same maximum number of nodes in N2(x), then for each node in 

N1(x), we generate a new MPR(x) set and each generated set will be processed independently 

until all nodes in N2(x) are covered by the generated MPR(x) set. Thus we will end up with a 

number of valid MPR(x) sets. The MPR(x) set selected is the one with minimum number of 

nodes. Figure 4 outlines the heuristic used for selecting the optimal MPR(x) set.  

// The Heuristic Used for Selecting the Optimal MPR(x) set 

For each node, after receiving HELLO messages from its neighbors, do: 

(1) Construct its own set of N1(x) and N2(x) nodes 

(2) Start with an empty MPR set MPR(x) 

(3) First select those one-hop neighbor nodes in N1(x) as MPRs which are the only neighbor of 

some node in N2(x), and add these one-hop neighbor nodes to the MPR set MPR(x) 

(4) Set M=1, where M is the number of MPR(x) sets 

(5) Set m=1, where m is a counter for the number of MPR(x) sets 

(6) While (m≤M) 

a. While there still exist some nodes in N2(x) which are not covered by MPR(x)m: 

i. For each node in N1(x) which is not in MPR(x)m, compute the covered nodes 

ii. Compute the maximum number of nodes among the uncovered nodes in the set N2(x) 

that is covered one or more nodes in the set N1(x) 

iii. Compute the number of nodes (K) which cover this maximum 

iv. If (K=1) 

Add the node of N1(x) to MPR(x)m 

Else (K>1) 

Compute the number of new generated set (A) as: A=K-1 

Select a node in N1(x) that covers this maximum 

Add the node of N1(x) to MPR(x)m 

For (i=1 to A) (Each other node that covers this maximum) 

Generates new set as follows: 

Select a node in N1(x) that covers this maximum 

Add the node of N1(x) to MPR(x)M+i 

Compute the total number of sets (M) as: M=M+K-1 

End If 

b. m=m+1 

(7)  For all sets MPR(x)1 to MPR(x)M select the MPR set with the least number of nodes as MPR(x). 

Figure 4. The heuristic used for selecting the optimal MPRs in OMPR algorithm. 

5.2. The Proposed OMPR Algorithm 

The proposed MPR algorithm uses the heuristic described in Section 5.1 to select the optimum 

MPR(x) set; therefore it is referred to as optimal MPR (OMPR) algorithm. The OMPR 

algorithm maximizes the performance of the network as it reduces the number of 

retransmission, which consequently reduces the bandwidth and power consumption, contention, 

and collisions at the receiver.  

The route discovery OMPR algorithm can be described as follows: Each node within the 

network calculates its MPR(x) set using the heuristic described in Section 5.1. Thus, each time 

a node receives a RREQ packet from its neighbors, it checks to see if it is used as a relay node 

for this neighbor. If so, then it forwards the packet, otherwise, it just discards it. 
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Figure 5 outlines the implementation of the proposed OMPR algorithm in MANETs to 

calculate two main performance measures, namely: (1) Number of retransmission (RET), 

which is defined as the average number of nodes that retransmit the RREQ normalized to the 

total number of nodes within the network (n); and (2) Reachability (RCH), which represents the 

average number of reachable nodes by any node within the network normalized to n, or it also 

can be defined as the probability that a RREQ packet initiated by any node (source node) will 

be successfully delivered to any other node (destination node) within the network. 

Since each node needs to know its one-hop neighbor, in Figure 6 we present an algorithm for 

calculating the one-hop neighbor for each node in a noisy MANETs. This is done by presenting 

the noise level in terms of pc. So that, for each node to discover its one-hop neighbor, it must 

be sure that the node is within its transmission range and the pc is equal to less than a certain 

random number ξ. However, the same algorithm can be used for noiseless environment by 

setting pc to unity. 

// Calculation of RET and RCH Using the OMPR Route Discovery Algorithm 

(1)  Generate nodes 

(2)  Calculate pause time (τ =0.75*R/u) // R is the transmission radius and u is the average node speed 

(3)  Calculate number of mobility loops (M=Tsim/τ) // Where Tsim is the simulation time 

(4)  For (m=1 to M) Do 

a.  For each node x (x=1, 2, …, n) // Where n is the number nodes within the network 

Calculate node one-hop neighbors N1(x) using the algorithm in Figure 6 

b.  For each node x (x=1, 2, …, n)  

Use the heuristic described in Section 5.1 to select the optimal MPR(x) set  

c.  For each node x (x=1, 2, …, n) 

Initiate RREQ 

Identify all nodes which are reachable by node x  

Construct the spanning tree starting with node x 

Use the MPR(x) set 

Calculate the total number of nodes which receive the RREQ packet (Rx) 

Calculate the total number of nodes which retransmit the RREQ packet (Tx) 

Accumulate Rx/(n-1) into accRx // The source node is excluded 

Accumulate Tx/(n-1) into accTx // The source node is excluded 

d.  Calculate average value accRx/n and accumulate the result into avgRx 

e.  Calculate average value accTx/n and accumulate the result into avgTx 

f.  Update nodes location 

(5)  Calculate average value avgRx/m // Represents reachability (RCH) 

(6)  Calculate average value avgTx/m // Represents number of retransmission normalized to n (RET) 

Figure 5. An algorithm for calculating RET and RCH using the OMPR algorithm. 

// Calculation of One-Hop Neighbor in a Noisy MANET. 

For a source node (i) Do: 

For each node within the network (except the source node i) Do: 

Calculate the distance (d) between two nodes (i and j) using ( ) ( )22

jiji yyxxd −+−=  

If (d≤R) Then                                       // Where R is the source node transmission radius 

Generate a random number (ξ) (0≤ξ<1) 

If (ξ≤pc)  Then                              // Where pc is the probability of reception 

Node is successfully delivered to node j 

Else (ξ>pc) 

Node is failed to delivered to node j 

End If 

End If 

Figure 6. Calculation of one-hop neighbor in a noisy MANET. 
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5.3. Features of the OMPR Algorithm 

The main features of the OMPR algorithm can be summarized as follows: 

� It is a neighbor-knowledge algorithm, in which each node needs to know the full list of 

its one-hop neighbors, and should pass this information back to all of them. 

� Each node calculates its MPR set locally. Therefore, it is a source-dependent process. 

� It generates an optimal MPR set for each node which has the minimum number of 

nodes among all other sets that cover the two-hop neighbors for that node. 

� The number of relay nodes for each node depends on the network topology and it is 

highly affected by the node mobility.  

� The performance of the OMPR may be extremely affected by the presence of noise. 

This is due to the fact that if the link between a source node and a relay node (a node in 

N1(x)) is broken, then all nodes in N2(x) that are attained through this relay node are 

disconnected.  

6. SIMULATIONS AND RESULTS 

The network simulator used in this work is MANSim [19, 20]. It is a MANET simulator 

especially developed to simulate and evaluate the performance of a number of flooding 

optimization algorithms for MANETs. It is written in C++ language, and it consists of four 

major modules, these are: network, mobility, computational, and algorithm modules. 

In order to evaluate and compare the performance of the proposed OMPR algorithm in noisy 

MANETs, a number of simulations were performed using MANSim. These simulations 

investigate the variation of RET and RCH with pc. The simulation results are compared against 

those obtained by using a number of other flooding optimization algorithms such as: pure 

flooding, probabilistic flooding with fixed retransmission probabilities (pt=0.8), probabilistic 

flooding with dynamic pt, LAR-1, and LAR-1P with pt=0.8. The input parameters for these 

simulations are listed in Table 1. The simulations results are plotted in Figures 7 and 8. 

Table 1. Input parameters. 

Parameters Values 

Geometrical model Random node distribution 

Network area 1000x1000 m 

Number of nodes (n) 100 nodes. 

Transmission radius (R) 200 m 

Average node speed (u) 5 m/sec  

Probability of reception (pc) From 0.5 to 1.0 in step of 0.1 

Simulation time (Tsim) 300 sec  

Pause time (τ) τ=0.75*(R/u)=30 sec 

 

The main points that are concluded from these simulations can be summarized as follows:  

� The probabilistic approach always achieves the highest possible RCH, but at the same 

time it introduces a low reduction in RET when it is compared with the other techniques.  

� The LAR-1 and LAR-1P algorithms presents the highest reduction in RET but at the 

same time they provide the lowest RCH. 

� The OMPR algorithm presents a moderate reduction in RET, when it is compared with 

probabilistic (fixed and dynamic pt), LAR-1, and LAR-1P. It performs better than 

probabilistic and less than LAR-1 and LAR-1P for various values of pc. The RCH it 

achieves is higher than that of LAR-1 and LAR-1P algorithms.  

� The RCH of the OMPR algorithm is highly affected and ruined due presence of noise as 

shown in Figure 8.   
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Since the main objective of using flooding optimization during route discovery is to achieve a 

cost-effective RCH, which means a highest possible reachability at a reasonable number of 

retransmission. The obtained results demonstrated that the OMPR algorithm provides an 

excellent performance as it can achieve an excellent cost-effective reachability, for various 

network noise levels, as compared to other route discovery algorithms.  

Figure 8 shows that the probabilistic and OMPR algorithms provide almost a comparative 

performance in noiseless and low-noise environments (pc>0.8). But, in terms of network 

reachability, the probabilistic approach overwhelmed the performance of the OMPR algorithm 

in noisy environment. For example, for mobile nodes with u=5 m/sec and pc=0.5, the OMPR 

algorithm achieves a reachability of only 34.6%, while for the same environment, the 

probabilistic approach achieves over 85%. But, the probabilistic approach achieves this high 

network reachability at a high cost of RET (≈68%) compared with RET=10.3% for OMPR.  

Figures 7 and 8 demonstrate that the OMPR algorithm provides an excellent network RCH in 

noisy environment, when compared with LAR-1 and LAR-1P. For example, when pc=0.8, 

OMPR achieves a RCH of 86.6% compared with 69.2% and 53.4% for LAR-1 and LAR-1P, 

respectively. However, this is achieved at a cost of 28.8% RET compared with 13.8% and 

8.9%, for LAR-1 and LAR-1P, respectively. The results also demonstrate that the OMPR 

algorithm is very sensitive to the variation in noise-level. Pure flooding is the least affected 

algorithm, then probabilistic algorithm, followed by the LAR-1 and LAR-1P algorithms.   

 

Figure 7. Variation of RET with pc for various algorithms.  

 

Figure 8. Variation of RCH with pc for various algorithms. 
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7. CONCLUSIONS 

The main conclusion of this work is that the OMPR algorithm demonstrated an excellent cost-

effective performance as compared to other route discovery algorithms, such as: pure flooding, 

probabilistic flooding, LAR-1 and LAR-1P algorithms In particular, OMPR provides a 

satisfactory RCH as compared to pure and probabilistic algorithms in high mobility noiseless 

and low-noise level MANETs environment (pc≥0.8), and always higher than LAR-1 and LAR-

1P algorithms. Also, OMPR significantly reduces RET while maintaining an appropriate RCH 

in various MANETs environments. The simulation results demonstrate that the performance of 

the OMPR algorithm is equivalent to the performance of pure flooding with minimum cost, 

when pc>0.8. The main drawback of the OMPR is its high sensitivity to noise-level as it yields 

the highest average rate of change in reachability in comparison with other algorithms.  

Our main recommendations for future work are to consider other factors during the selection of 

MPR set, such as: nodes residue energy level, nodes reliability, nodes security measures, etc. 

Also, in order to enhance the performance of the OMPR algorithm in noisy MANETs, we 

suggest modifying the heuristic to add supporting nodes to the MPR set to maintain high 

reachability in such environment. Furthermore, it is important to perform further investigation 

to the performance, for example, investigate the performance of the algorithm under realistic 

mobility models and variable node densities and nodes radio transmission range.  
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