
Advanced Computing: An International Journal (ACIJ), Vol.3, No.4, July 2012

DOI : 10.5121/acij.2012.3403 21

‘CodeAliker’ - Plagiarism Detection on the Cloud

Nitish Upreti
1
 and Rishi Kumar

2

Department of Computer Science and Engineering, AMITY University, Noida, India.
nitishupreti@gmail.com

Department of Computer Science and Engineering, AMITY University, Noida, India.
rishikumar182000@gmail.com

Abstract

Plagiarism is a burning problem that academics have been facing in all of the varied levels of the

educational system. With the advent of digital content, the challenge to ensure the integrity of academic

work has been amplified. This paper discusses on defining a precise definition of plagiarized computer

code, various solutions available for detecting plagiarism and building a cloud platform for plagiarism

disclosure.

‘CodeAliker’, our application thus developed automates the submission of assignments and the review

process associated for essay text as well as computer code. It has been made available under the GNU’s

General Public License as a Free and Open Source Software.

Keywords

Plagiarism, String matching, Cloud Computing

1.Introduction

An insightful look into the scenario of academic integrity and its implications give us the major

motivation for pursuing the subject. The issue holds utmost significance as the intellectual

standards of an individual pursuing an academia a reestablished around his ability to produce

authoritative work. Plagiarism is thus lethal. Every year a large number of students and scholars

submit a huge volume of material to their respective mentors and professors. Due to the sheer

amount of text involved, a manual scrutiny is infeasible. Analyzing the situation, we found no

existing work in the public domain that solved the problem faced by educational institutes

worldwide. Most of the alternatives were either closed source or catered to only a fraction of the

entire problem. Working on this issue, at the outset we explore the sensitive aspect of

classification of documents as ‘authentic’ or ‘plagiarized’. We then analyze numerous

approaches to Plagiarism detection. Advancing then to our chief goal of implementing an

engine and leveraging the cloud platform for scalable and robust plagiarism detection. Alex

Aliken’s MOSS[1] is chosen as the key approach for building the application. Result and

conclusion follow where we present our observations and learning.

2. Classification of Text

Broadly categorizing, the nature of text submitted to such a system can either be an Essay that is

plain text in language or computer code in any of the popular language such as C, C++, Java or

Ruby for instance. It is easy to figure out whether an essay text has been plagiarized however

source code copying is a delicate issue with mostly a fine line drawn between ‘code reuse’,

Advanced Computing: An International Journal

‘collaboration’, ‘non-citation’ and ‘plagiarism’

an OOP system and ‘Don’t re-invent the wheel

more blurred. With hardly any definition

identifying copying instances is infeasible. Hence

little work has been done on the topic; the only concrete input comes from the work of

Cosma and Mike Joy [2]. Their work follows a

finding the right answers and opinions

to have our own precise judgment on

assignment submitted consists of

in almost all the sophisticated code bases, could be a major potential resource for

plagiarism instances. Nonetheless

looking false positives as Copyright statements occur

of CodeAliker we choose to strip off comments

we address a multitude of other questions. Is using an external library or API an instance of

plagiarism? For most of the cases

are a central part of any sophisticated piece

import statements and library includes.

submission; code for the design is

manually is much more effective than

3. Approaches to Plagiarism Detection

Various different approaches to Plagiarism detection exist and their performance and speed

to a great extent. Also certain plagiarism detection sche

specific structure and nature. A rich t

Plagiarism

Web Scrapping Based

String Matching

Advanced Computing: An International Journal (ACIJ), Vol.3, No.4, July 2012

citation’ and ‘plagiarism’. With learning themes such as ‘Code Reuse’ in

invent the wheel’ code philosophies, the distinction are

With hardly any definition in place designing a system capable of accurately

nstances is infeasible. Hence concrete definitions need to be in place.

topic; the only concrete input comes from the work of

[2]. Their work follows a survey-based approach in the U.K academics

finding the right answers and opinions. However for implementing a practical solution we need

judgment on the problem rather than a crude hypothesis

submitted consists of comments and the actual source code. Comments, which occur

in almost all the sophisticated code bases, could be a major potential resource for

onetheless they present a major pitfall and could lead on to suspicious

Copyright statements occur frequently as comments. For the purpose

we choose to strip off comments so as to avoid any such issues. Moving forward

we address a multitude of other questions. Is using an external library or API an instance of

t of the cases we found that library use without citation is legitimate

sophisticated piece of computer program. CodeAliker thus filters out

import statements and library includes. An intuitive User Interface design can also be a part of

ode for the design is put under scrutiny by CodeAliker but looking at the design

manually is much more effective than plain UI code checking.

Approaches to Plagiarism Detection

Various different approaches to Plagiarism detection exist and their performance and speed

Also certain plagiarism detection schemes are more suitable for data

A rich taxonomy can be summarized in the diagram below

Figure 3.1

Plagiarism Detection Approaches

Local Database Based

Non Sturctured

Fingerprinting
Techniques

Matching

Parameterized
Techniques

Structured

ACIJ), Vol.3, No.4, July 2012

22

With learning themes such as ‘Code Reuse’ in

distinction are even

m capable of accurately

need to be in place. A

topic; the only concrete input comes from the work of Georgina

in the U.K academics for

However for implementing a practical solution we need

rather than a crude hypothesis. Code

Comments, which occur

in almost all the sophisticated code bases, could be a major potential resource for identifying

and could lead on to suspicious

For the purpose

Moving forward,

we address a multitude of other questions. Is using an external library or API an instance of

legitimate as they

CodeAliker thus filters out

an also be a part of

but looking at the design

Various different approaches to Plagiarism detection exist and their performance and speed vary

data set with a

axonomy can be summarized in the diagram below.

Based

Sturctured

Advanced Computing: An International Journal (ACIJ), Vol.3, No.4, July 2012

23

Web Scrapping based approaches use the World Wide Web to check for Plagiarism instances

from a large corpus of data. The scope of Web Scrapping is huge and lots of published work

exists on such systems. Our focus for this research is on systems based on a local database

compiled from assignments submitted by students taking the classes and past year submissions.

Local Database Based Approaches can be either Structured or Non Structured. The Structured

approach creates a graph model of information in the document. This approach is used mostly

with code-based assignments.

Non-Structured techniques are the most popular ones and are useful on a wide variety of text

material. They are classified based on the algorithm used. Document Fingerprinting, String

Matching and Parameterized Matching are the popular ones [3].

Tools based on the fingerprint approach work by creating “fingerprints” for each file which

consist statistical information about the file, such as average number of terms per line, number

of unique terms, and number of keywords [4].The DUP tool [5] is based on a parameterized

matching algorithm, which detects identical and near-duplicate sections of source-code, by

matching source-code sections whose identifiers have been substituted (renamed) systematically

[3].

String Matching algorithms are quite popular and effective. MOSS [1], (YAP3) [6], JPlag [7],

and Sherlock [8] are some of the popular ones available. CodeAliker is based on MOSS[1] that

employs string-matching algorithms using k-grams, where a k-gram is an adjacent substring of

length k. Winnowing, a local fingerprinting algorithm is also used to ensure matches of certain

length are detected.

4. Designing the Engine with Ruby

There were various motives for choosing MOSS as the core for CodeAliker’s engine. Also

Ruby was used to implement the engine after considering several important factors. The

language provides excellent text processing libraries, encourages an agile development

methodology and Test Driven Development (TDD). Moreover it is ready for the web with

excellent frameworks available.

MOSS is highly effective for plagiarism detection with text of different nature. It can also be

scaled to handle a large volume of data. MOSS also guarantees matches of certain length to be

detected [1].

The engine consists of three major modules: Text Filter, Hasher and Winnower. All of the

components can be customized with easy to write configuration files.

The text filter has a key role to play when processing code assignments. Based on the approach

MOSS suggests, the comments are stripped off, text is lowercased, identifiers are replaced with

a dummy symbol, language specific keywords are removed and punctuations with no semantic

meanings are stripped off. Filtered text with noise eliminated is thus obtained.

The filtered text is then fed to a Hasher that calculates hashes for the given text. A rolling hash

function based on the famous Rabin Karp Algorithm is employed to calculate hashes quickly.

With each hash value calculated, the corresponding line number where the text occurred is

stored. This aids later in presenting user with the information regarding the instances where

plagiarized text is present.

The Winnower is an implementation of the ‘Robust Winnowing’ algorithm defined by MOSS.A

set of hash is chosen to be as the finger print of a document. Line number information is still

preserved.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.4, July 2012

24

Winnower needs to be configured with parameters value ‘k’ for k-gram, a threshold value ‘t’

and a modulus value ‘q’. If there is a substring match at least as long as the guarantee

threshold, ‘t’, then this match is detected, and we do not detect any matches shorter than

the noise threshold, ‘k’ [1].The hash values computed are two large and hinder a

scalable implementation; hence a value ‘q’ is used as the modulus.

For CodeAliker we found the sweet spot with the values 5(k), 8(t) and 10001(q) respectively.

The documents are compared based on the final fingerprints, with plagiarism instance being

reported line by line. Check for essay based assignment is surprisingly similar with the Filter

step being omitted.

5. Building a Cloud Application

The most interesting part of our research is to build a cloud application for the engine. For

building the web application we employ the Ruby on Rails platform.

Ruby on Rails, a full stack framework for Ruby is excellent for agile development and

sustainable productivity. It boasts a high modular design, excellent package management

capabilities, database abstraction with ORM(Object Relational Mapping) library and ease of

deployment.

The application is built with the MVC (Model – View – Controller) design pattern inherent on

the Rails Framework. CodeAliker aims to ease the workflow involved by automating the entire

process. To achieve this, an authentication-based system is introduced for the professors where

assignments for each class they take are available to them as a separate bunch.

The professor can mark any on the assignment as primary and check with respect to that

assignment all the possible plagiarized instances. Thus getting a complete view of the scenario

effortlessly in a non ad-hoc fashion. Academics can also manually supervise the submission and

reviews.

While the traditional delivery of software services have been mainstream, bringing the cloud

into perspective changes the entire scenario. Cloud tends to centralize our resources, code base

and data onto an always-available depot. Hardware resources can be accurately utilized, load on

a high demand system can be catered to and system can be easily scaled. Configuration

management is also made effortless. Any organization with requirements for sucha system is in

need of the cloud. The platform allows changes to be pushed onto codebase with a push of a

button, rather than relying on extensive upgrade packs.

For plagiarism detection in a university or an academic institute the needs are critical and point

towards the cloud. The computing requirements are thus addressed. Also our system is

centralized and easily scaled.

For hosting CodeAliker on the cloud, Heroku, a cloud platform has been employed.

The source code is available to public here on: https://github.com/Myth17/CodeAliker

The application is available for free use at: http://codealiker.heroku.com/

Advanced Computing: An International Journal

6. Results

The results for CodeAliker display

suspected plagiarism instances are previewed

clearer picture, the plagiarized instances are marked with the line numbers in order of aid

manual scrutiny and presenting a

7. Conclusion

We have analyzed the entire scenario of Plagiaris

and solutions for developing an

research being our ability to define

different approaches towards plagiarism detection, practical implementation of the MOSS

engine with fine tuned parameters

platform.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.4, July 2012

Figure 6.1

Figure 6.2

results for CodeAliker display the assignment marked as primary to the left while the

suspected plagiarism instances are previewed stacked onto each other in the right. To present a

clearer picture, the plagiarized instances are marked with the line numbers in order of aid

iny and presenting a more cohesive report.

lyzed the entire scenario of Plagiarism detection, while figuring out the

olutions for developing an application for the purpose. Major accomplishment of the

our ability to define a precise definition of code plagiarism, understanding

towards plagiarism detection, practical implementation of the MOSS

parameters and building a scalable web application hosted on a cloud

ACIJ), Vol.3, No.4, July 2012

25

the assignment marked as primary to the left while the

the right. To present a

clearer picture, the plagiarized instances are marked with the line numbers in order of aid

while figuring out the problems

Major accomplishment of the

understanding

towards plagiarism detection, practical implementation of the MOSS

hosted on a cloud

Advanced Computing: An International Journal (ACIJ), Vol.3, No.4, July 2012

26

References

[1] Saul Schleimer, Daniel S. Wilkerson and Alex Aiken, “Winnowing: Local Algorithms for Document

Fingerprinting”, SIGMOD '03 Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, pp 76-85, 2003.

[2] Georgina Cosma and Mike Joy, “ Towards a definition of Source Code Plagiarism”, IEEE

TRANSACTIONS ON EDUCATION, VOL. 51, NO. 2, MAY 2008.

[3] Georgina Cosma and Mike Joy, “An Approach to Source-Code Plagiarism Detection and

Investigation Using Latent Semantic Analysis”, IEEE TRANSACTIONS ON COMPUTERS, VOL.

61, NO. 3, MARCH 2012 379.

[4] M. Mozgovoy, “Desktop Tools for Offline Plagiarism Detection in �Computer Programs,”

Informatics in Education, vol. 5, no. 1, pp. 97- �112, 2006.

[5] B. Baker, “On Finding Duplication and Near-Duplication in LargeSoftware Systems,” Proc. IEEE

Second Working Conf. Reverse Eng.,pp. 85-95, 1995.

[6] M.J. Wise, “YAP3: Improved Detection of Similarities in Computer Program and Other Texts,”

Proc. 27th SIGCSE Technical Symp.,pp. 130-134, 1996.

[7] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding PlagiarismsAmong a Set of Programs with

JPlag,” J. Universal ComputerScience, vol. 8, no. 11, pp. 1016-1038, 2002.

[8] M. Joy and M. Luck, “Plagiarism in Programming Assignments,” IEEE Trans. Education, vol. 42,

no. 2, pp. 129-133, May 1999.

Authors

Nitish Upreti is computer science student at AMITY School of Engineering and

Technology, Noida, India. His fields of interest include Algorithm Design, Artificial

Intelligence and building scalable web applications.

Rishi Kumar is computer science faculty at Amity School of Engineering and

Technology, Noida, India. His fields of interest include Artificial Intelligence,

Expert System & Image Processing.

