
International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

DOI : 10.5121/ijist.2012.2407 71

Design and Implementation of LZW Data

Compression Algorithm

Simrandeep kaur, Student

1
; V.Sulochana Verma

,Project Consultant

2

Academic and Consultancy Services Division

C-DAC Mohali, Punjab India
Email: simrandeepkaur25@yahoo.com1; Email: suchivlsi@gmail.com2

Abstract

LZW is dictionary based algorithm, which is lossless in nature and incorporated as the standard of the

consultative committee on International telegraphy and telephony, which is implemented in this paper.

Here, the designed dictionary is based on content addressable memory (CAM) array. Furthermore, the

code for each character is available in the dictionary which utilizes less number of bits (5 bits) than its

ASCII code. In this paper, LZW data compression algorithm is implemented by finite state machine, thus

the text data can be effectively compressed. Accurate simulation results are obtained using Xilinx tools

which show an improvement in lossless data compression scheme by reducing storage space to 60.25% and

increasing the compression rate by 30.3%.

Keywords

Compression rate, LZW codes and Binary text.

1. Introduction

Data compression is often referred to as coding, where coding is general term showing any

special representation of data which satisfies a given need. Information theory is defined as the

study of efficient coding. Data compression may be viewed as a branch of information theory in

which the primary objective is to minimize the amount of data to be transmitted. Data

compression has an important role in the area of transmission and storage. It plays a key role in

information technology. The reduction of redundancies in data representation in order to decrease

data storage requirement is defined as data compression. It used less usage of resources such as

memory space or transmission capacity. Data compression is classified as lossless and lossy

compression. Lossless compression is used for text and lossy compression for image.

In 1980, Terry Welch invented LZW algorithm which became the popular technique for general-

purpose compression systems. It was used in programs such as PKZIP as well as in hardware

devices. Lempel-Ziv-Welch proposed a variant of LZ78 algorithms, in which compressor never

outputs a character, it always outputs a code. To do this, a major change in LZW is to preload the

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

72

dictionary with all possible symbols that can occur. LZW compression replaces string of

characters with codes. LZW algorithm is a lossless data compression algorithm which is based on

dictionaries [1]. This LZW compressor maintains records with characters that have been read

from a file to be compressed. Each character is represented by an index number in the dictionary.

In this paper, we proposed a improve scheme for data compression. By utilizing, content access

memory dictionaries are built in the proposed system. Each character in dictionary is replaced

with a code which is less number of bits than its ASCII code. The proposed LZW algorithm is

evaluated by finite state machine technique in VHDL. This paper is organized as follow in section

2 an introduction to LZW algorithm is explained; in section 3, LZW data compression algorithm

using finite state machine (FSM) is described. In section 4 experiments and results are shown.

Finally conclusion is exposed in section 5.

1.1. Data Compression Model

The block diagram of data compression model is described in figure 1.

Input data

Reduction

Reduction of entropy

Entropy encoding

Compressed Data

Figure 1: Data compression model

A data compression model consists of three major stages which are redundancy, reduction in

entropy and entropy encoding.

2. Data Compression Algorithm: LZW (Lempel-Ziv Welch) Algorithm

There are many algorithms which have been used for data compression like Huffman and Lempel-

Ziv-Welch (LZW), arithmetic coding.LZW algorithm is the most popular algorithm. LZW

algorithm is just like a greedy approach and divides text into substrings. Like the LZW algorithm

proposed in [2]. LZW algorithm has both compression and decompression techniques which is

explained as below.

2.1.LZW Compression Algorithm

LZW compression algorithm is dictionary based algorithm which always output a code for a

character. Each character has a code and index number in dictionary. Input data which we want to

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

73

compress is read from file. Initially data is entered in buffer for searching in dictionary to generate

its code. If there is no matching character found in dictionary. Then it will be entered as new

character in dictionary and assign a code. If character is in dictionary then its code will be generate.

Output codes have less number of bits than input data. This technique is useful for both graphics

images and digitized voice.

 String j, char c;

j- get input character

while (there is still input character)

ch- transfer input string to ch .

if (ch is in dictionary)

Generate its codeword;

else

update ch and get next character to ch and

again search data in dictionary;

if (it is not present in dictionary) then

add that string to dictionary;

end if;

Compression example: consider a string “BAABAABB” is given to LZW algorithm. Figure 2

shows the steps done by LZW to generate the output code is “1211211C”. In following example

when input string (BAABAABBC) is given as a text to LZW compression algorithm. Initially every

single character will save in buffer. When ‘B’ is move to buffer “parse string” then it will replace by

1. Character has its own ASCII code of 7 bit. In case of B, it has 65 as ASCII code. But in

dictionary it will replace by 1. So, less number of bits will be used to represent character. Similarly,

AA will move forward and generating its code which is also fewer bits than original. BAA is saved

in buffer its code is generated from both AA and B’s codeword that is defined as 12. At last when

full string has been searched in dictionary then its output will be generated as 1211211C.

BAABAABBC

1

B

B B BAABAABB

C

1 2

B AA

1, AA AA AABAABBC

1 2 12

B AA BAA

1, 2, BAA BAA BAABBC

1 2 12 11C

B AA BAA BBC

121211C BBC BBC

121211C COMPRESSED

DATA

PARSE STRING

Figure 2: Example of LZW algorithm

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

74

2.2.LZW Decompression Algorithm

In LZW decompression algorithm, it needs to take the stream of code output from the compression

algorithm, and use them to exactly recreate the input stream. Decompression algorithm is shown as:

ch = output code

while (there is still data to read)

code =get input character;

if (code is not in the dictionary)

entry =get translation of code;

else

entry=get translation of output code;

output entry;

 ch =first character in entry

add output code + c to the dictionary

output code = code;

In decompression algorithm, code will be searched in dictionary and its character will be output.

3. Implementation of LZW Algorithm

The proposed finite state machine diagram of LZW algorithm is shown in figure 3.

S0 IDLE

S1 IDLE1

S2 FILL BUFFER

S3 READ STRING

S4 WAIT

S5 SEARCH IN DICT

S6 WRITE TO

QUEUE

S8

S9

S7 WAIT FOR

BUS ACK

S10 INSERT

CHARCTER

S11 SEARCH ITS

CODEWORD

S12

GENERATE

CODEWORD

S8 NEW

ENTRY

S9

GENERATE

CODEWORD

Figure 3: Finite state machine Diagram of LZW algorithm

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

75

LZW algorithm initially has idle state. New character has been added to dictionary when no

longer match will found in search process. LZW algorithm is execute state S8 for performing

adding operation in dictionary. Dictionary is based on content access memory technique which

has both content as well as code in it. Content access memory is special type of memory used for

fast accessing data from memory. In the proposed system, initialization of compression signal is

done before to perform LZW algorithm. Input data is entered to LZW algorithm through file. The

proposed algorithm shifted whole input data to buffer which is defined in S3 state. Every single

character has been searched in content access memory. If match signal is ‘1’ then character was

found in dictionary. Then code is transmitted to output buffer “de11”. LZW decompressor must

construct same steps like compressor. Decompressor has reviewed same process since it is

possible to have input codes for searching in dictionaries to recreate its original string. Individual

character’s code can be also viewed in dictionary.

Table 1: Specifications of FSM state for LZW Algorithm

3.1.Improvement of the dictionary storage method

LZW algorithm is mainly used for compressing character but not numeric. Every character has

ASCII code which is of 7 bits. But in our proposed algorithm we have to replace character with 5

bit code in dictionary to improving data compression rate.

4. Experimental Results

LZW Compression algorithm is modelled in VHDL. The syntax of the RTL design is checked by

using Xilinx tool.

State Description

S0 idle Initial state reset the system

S1 idle1 Initialization of signal

S2Fill buffer Transfer text from file to buffer

S3Read string Read character by character for searching

S4 wait For waiting

S5 search in dict For searching in dictionary by signal character

S6Write to queue Save output to output buffer

S7 wait for ack Wait for Bus acknowledge

S8New Entry Adding new entry

S9Generate codeword To generate codes

S10 Insert single character

S11search its codeword Check in dictionary

S12 generate codeword Display codeword

Decompression For performing decompression

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

76

4.1.Simulation Results

In the proposed work, the simulations results are done using Xilinx ISE Simulator. Simulation

results show an improvement in lossless data compression scheme. In addition to this, the

proposed technique results in reduced storage space by 60.25% and increased compression rate by

30.3%.

4.2.LZW Compressor Result

Figure 4 shows that input is given to LZW Compressor through text file. “Connect the input to

logic one & two & three++*”string is entered to it. Input string having collection of special

characters, alphabets. Whole text will transfer to buffer “data read “when data_write=1, load=1,

clear=1.Rd_b=0, wr_b=1, data_write=0 and lzw_search=1 are given to start searching process to

find longest match in content access memory arrays. There are two main counters which are used

for searching process. “Count1” is used for searching character in dictionary. If character is

present in dictionary then its code is saved in other buffer that is “de11”. “Count” buffer is shifted

to next value and start to point next character present in input data. All searched characters will

save in “check” buffer. Once the content of check buffer is equal to content of“data read” buffer

then searching process indicate to completed and their codes will save in “de11” buffer which is

shown in figure5compressed output isgenerated through file shown in figure 7.

Input text – connect the input to logic one & two & three.

Outputtext-12114514615730171419514251522372152315551482

Figure 4: Enter data through file which we want to compress

Given Input text – connect the input to logic one & two & three

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

Input is given by text file which is

input as a collection of characters in one clock cycle.

Figure 5: Searching process

Simulation for LZW Compression algorithm

LZW compression algorithm .then it is transmitted to 119 bits and cloc

ps.

Figure 6: Complete data compression process

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

is given by text file which is one of the data type of vhdl language. File is used for giving

input as a collection of characters in one clock cycle.

: Searching process (Searching each character from dictionary)

for LZW Compression algorithm observed on Xilinx tool. When 350 bits entered to

LZW compression algorithm .then it is transmitted to 119 bits and clock rate for simulation is 493

Figure 6: Complete data compression process

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

77

is used for giving

from dictionary)

When 350 bits entered to

k rate for simulation is 493

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

Figure 7

Output text-121145146157301714

4.3. RTL view of LZW Compressor

Figure

This RTL view shows the signal

Reset, clock, start_compression used

wr_b, rd_b are signals used for

dictionary. The signal description of this

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

Figure 7: Compressed output generate on file

12114514615730171419514251522372152315551482

iew of LZW Compressor

Figure-8: RTL view of LZW Compressor

signals which are used for proposed LZW data compression algorithm

compression used for initialization of data compression. Load,

_b are signals used for buffer in LZW algorithm. Search_lzw is for searchi

ption of this proposed algorithm is shown in table 2.

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

78

LZW data compression algorithm.

oad, data_write,

searching data in

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

79

 4.3.1. Signal description of LZW Compressor

Table 2: Input/output signals with Remarks

Name Description

Reset To reset

Clock Provide clock

Start_compression Signal for start compression

Data_write Signal for write data

Load For data load in buffer

Clear Clear buffer

Wr_b Signal for write and read

Rd_b Signal for write and read

Search_lzw For searching

 Add_new_entry For adding new data

Data_in Enter value

4.3.2. Analysis of compression rate with different bit size

Table 3: Analysis of compression rate

Word Size Compression Rate Compressed Bit

Size

Original Bit Size

4 53.125 17 28

10 33.75 27 70

38 30.11 95 265

50 29.75 119 350

4.3. 3.Verification and Synthesis

For system verification, we successfully execute proposed LZW algorithm. Test case for finite

state machine is generated in VHDL. The synthesis result of LZW compression algorithm is

summarized in table 4. The synthesis report shows device utilization summary.

Table 4: Device Utilization Summary

Number of Slices 3606 out of 6144 58%

Number of Slice Flip Flops 4097 out of 12288 33%

Number of 4 input LUTs 4190 out of 12288 34%

Number of IOs: 30

Number of bonded IOBs: 30 out of 240 12%

IOB Flip Flops: 1

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

80

4.4.Comparison of the Results with the Previous Work

The results achieved are compared with the reference work is shown in table 5. It is concluded

that enhancement in the performance of LZW Data Compression algorithm by using less number

of bits than their ASCII code, utilizing content addressable memory arrays. Thus the text data can

be effectively compressed and compared with previous work. In addition to this, the proposed

research work, results show the reduction in storage space by 60.25% and increase the

compression rate by 30.3%. Comparison of this work with previous work is described in table 5

shown as:

Table 5: Comparison between this research works with previous work

Input Size Compressed bit with previous work Compressed bit with

Improved LZW

112 104 70

144 96 90

152 100 95

184 156 115

360 296 225

5. Conclusions

In order to get better compression rate, the proposed dictionary based LZW algorithm can

replace their codes with 5 bits instead of 7 bits ASCII code. LZW algorithm is evaluated by

finite state machine technique. With this technique we have observed that storage space is

reduced up to 60.25% and compression rate improved up to 30.3%.Weanalyze compression rate

with different number of input bits on Xilinx tool.

6. References

[1] Parvinder Singh,ManojDuhan and Priyanka(2006)“Enhancing LZW Algorithm to Increase Overall

Performance”, Annual IEEE Indian Conference,pp1-4.

[2] Ming-Bo Lin, Jang-Feng Lee, G. E. Jan,(2006)“ALossless Data Compression and Decompression

Algorithm and Its Hardware Architecture” VLSI IEEE Transactions ,Vol.14,pp925-936.

[3] YiCao, Guoging Wu, Huawei Wang,(2011) “A Smart Compression Scheme for GPU-Accelerated

Volume Rendering of Time-Varying Data.” Virtual Reality and Visualization (ICVRV)

conference.pp205-210

[4] Guolv.Tan, Yujun Wang,(2009) “A Compression Error and Optimize Compression Algorithm for

vector Data.”, Environmental Science and Information application technology,vol.2,pp522-525.

[5] Parvinder Singh, Sudhir Batra, and HR Sharma,(2005) “Evaluating the performance of message

hidden in 1st and 2nd bit plane", WSEAS Trans. on Information Science an Applications, vol 2, pp

1220-1227.

[6] Ozsoy, A. Swany, “LZSS Lossless Data Compression on CUDA”,(2011) “IEEE international

conference on Cluster computing (CLUSTER),pp403-411.

[7] Mateosian , R, “Introduction to Data Compression” (1996), vol.16.

[8] Henriques and N. Ranganathan,(2005) “A parallel architecture for data compression,” IEEE Symp .on

parallel and distributed processing Parallel. Distribution, pp260-266.

International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.4, July 2012

81

[9] Huan Zhang, Xiao-ping Fan, Shao-qiang Liu Zhi Zhong “Design and Realization of Improved LZW

Algorithm for Wireless Sensor Networks”,International Conference on Information Science and

Technology,pp671-675.

6. Bibliographies

Simrandeep Kaur received the B.Tech degree in Computer Science Engineering from the

Punjab technical university, Punjab in 2010, and pursuing M.Tech degree in VLSI Design

from Centre of Development and Advance Computing Mohali, Punjab .Currently, she is

doing her thesis work on data compression technique. Her topic of interest is data

compression, security system, data structure and embedded system.Email-

simrandeepkaur25@yahoo.com

VemuSulochana has obtained her Bachelor of Technology degree in Electronics &

Communication Engineering from JNTU Kakinada and Master of Technology degree in

VLSI Design Automation & Techniques from NIT, Hamirpur in 2004 and 2009

respectively. She is working as a Project consultant at C-DAC, Mohali to conduct

innovative research in the area of VLSI design. Her research interests include low power

VLSI design, Computer-aided design (CAD), Digital & Analog VLSI Desig n. She enjoys

teaching VLSI design, Device modelling, Low-power VLSI Design, Analog & mixed

sign al VLSI Design. Email-id is suchivlsi@gmail.com

