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ABSTRACT 

 
This paper discusses the design of active controllers for achieving generalized projective synchronization 

(GPS) of identical hyperchaotic Lü systems (Chen, Lu, Lü and Yu, 2006), identical hyperchaotic Cai 

systems (Wang and Cai, 2009) and non-identical hyperchaotic Lü and hyperchaotic Cai systems. The 

synchronization results (GPS) for the hyperchaotic systems have been derived using active control method 

and established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these 

calculations, the active control method is very effective and convenient for achieving the GPS of the 

hyperchaotic systems addressed in this paper. Numerical simulations are provided to illustrate the 

effectiveness of the GPS synchronization results derived in this paper. 
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1. INTRODUCTION 
 
Chaotic systems are nonlinear dynamical systems which are highly sensitive to initial conditions. 

This sensitivity of chaotic systems is usually called as the butterfly effect [1]. Small differences in 

initial conditions (such as those due to rounding errors in numerical computation) yield widely 

diverging outcomes for chaotic systems.   

 

Hyperchaotic system is usually defined as a chaotic system with more than one positive 

Lyapunov exponent. The first hyperchaotic system was discovered by O.E. Rössler ([2], 1979). 
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Since hyperchaotic system has the characteristics of high capacity, high security and high 

efficiency, it has the potential of broad applications in nonlinear circuits, secure communications, 

lasers, neural networks, biological systems and so on. Thus, the studies on hyperchaotic systems, 

viz. control, synchronization and circuit implementation are very challenging problems in the 

chaos literature [3].  

 

Chaos synchronization problem received great attention in the literature when Pecora and Carroll 

[4] published their results on chaos synchronization in 1990. From then on, chaos synchronization 

has been extensively and intensively studied in the last three decades [4-37]. Chaos theory has 

been explored in a variety of fields including physical systems [5], chemical systems [6], 

ecological systems [7], secure communications [8-10], etc. 

 

Synchronization of chaotic systems is a phenomenon that may occur when   a chaotic oscillator 

drives another chaotic oscillator. Because of the butterfly effect which causes the exponential 

divergence of the trajectories of two identical chaotic systems started with nearly the same initial 

conditions, synchronizing two chaotic systems is seemingly a very challenging problem. 

  

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of anti-synchronization is to use the 

output of the master system to control the slave system so that the states of the slave system have 

the same amplitude but opposite signs as the states of the master system asymptotically. In other 

words, the sum of the states of the master and slave systems are designed to converge to zero 

asymptotically, when anti-synchronization appears. 

 

In the recent years, various schemes have been deployed for chaos synchronization such as PC 

method [4], OGY method [11], active control [12-15], adaptive control [16-20], backstepping 

design [21-23], sampled-data feedback [24], sliding mode control [25-28], etc.   

 

In generalized projective synchronization (GPS) of chaotic systems [29-30], the chaotic systems 

can synchronize up to a constant scaling matrix. Complete synchronization [12-13], anti-

synchronization [31-34], hybrid synchronization [35], projective synchronization [36] and 

generalized synchronization [37] are particular cases of generalized projective synchronization. 

GPS has important applications in areas like secure communications and secure data encryption. 

In this paper, we deploy active control method so as to derive new results for the generalized 

projective synchronization (GPS) for identical and different hyperchaotic Lü and hyperchaotic 

Cai systems. Explicitly, using active nonlinear control and Lyapunov stability theory, we achieve 

generalized projective synchronization for identical hyperchaotic Lü systems (Chen, Lu, Lü and 

Yu, [38], 2006), identical hyperchaotic Cai systems (Wang and Cai, [39], 2009) and non-identical 

hyperchaotic Lü and hyperchaotic Cai systems. 

 

This paper has been organized as follows. In Section 2, we give the problem statement and our 

methodology. In Section 3, we present a description of the hyperchaotic systems considered in 

this paper. In Section 4, we derive results for the GPS of two identical hyperchaotic Lü systems. 

In Section 5, we derive results for the GPS of two identical hyperchaotic Cai systems. In Section 

6, we discuss the GPS of non-identical hyperchaotic Lü and hyperchaotic Cai systems. In Section 

7, we summarize the main results derived in this paper. 
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2. PROBLEM STATEMENT AND OUR METHODOLOGY 
 
Consider the chaotic system described by the dynamics 

( )x Ax f x= +&            (1) 

where 
n

x ∈R is the state of the system, A  is the n n× matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system. We consider the system (1) as the master or 

drive system. 

As the slave or response system, we consider the chaotic system described by the dynamics 

( )y By g y u= + +&             (2) 

where 
n

y ∈R is the state of the system, B is the n n× matrix of the system parameters, 

: n n
g →R R is the nonlinear part of the system and

n
u ∈R is the controller of the slave system. 

If A B= and ,f g= then x and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems.  

In the active control approach, we design a feedback controller ,u which achieves the generalized 

projective synchronization (GPS) between the states of the master system (1) and the slave 

system (2) for all initial conditions (0), (0) .n
x z ∈R  

For the GPS of the systems (1) and (2), the synchronization error is defined as 

  ,e y Mx= −           (3) 

where  

  

1

2

0 0

0 0

0 0 n

M

α

α

α

 
 
 =
 
 
 

L

L

M M O M

L

       (4) 

In other words, we have 

 ,   ( 1, 2, , )i i i ie y x i nα= − = K        (5) 

From (1)-(3), the error dynamics is easily obtained as 

   ( ) ( )e By MAx g y Mf x u= − + − +&           (6) 

The aim of GPS is to find a feedback controller u so that 

lim ( ) 0
t

e t
→∞

=  for all (0) .n
e ∈R       (7) 
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Thus, the problem of generalized projective synchronization (GPS) between the master system (1) 

and slave system (2) can be translated into a problem of how to realize the asymptotic 

stabilization of the system (6). So, the objective is to design an active controller u for stabilizing 

the error dynamical system (6) at the origin.  

We take as a candidate Lyapunov function 

            ( ) ,T
V e e Pe=                                                      (8) 

where P is a positive definite matrix.  

Note that : n
V →R R is a positive definite function by construction.  

We assume that the parameters of the master and slave system are known and that the states of 

both systems (1) and (2) are measurable. 

If we find a feedback controller u so that 

( ) ,T
V e e Qe= −&          (9) 

where Q is a positive definite matrix, then : n
V →& R R  is a negative definite function.  

Thus, by Lyapunov stability theory [40], the error dynamics (6) is globally exponentially stable 

and hence the condition (7) will be satisfied. Hence, GPS is achieved between the states of the 

master system (1) and the slave system (2). 

3. SYSTEMS DESCRIPTION 

The hyperchaotic Lü system ([38], 2006) is described by the dynamics 

1 2 1 4

2 2 1 3

3 3 1 2

4 4 1 3

( )x a x x x

x cx x x

x bx x x

x dx x x

= − +

= +

= − +

= +

&

&

&

&

          (10) 

where 
1 2 3 4, , ,x x x x are the states and , , ,a b c d are constant, positive parameters of the system. 

The Lü system (10) exhibits a hyperchaotic attractor when the parameter values are taken as  

     36,   3,   20a b c= = =  and 1.3d =  

Figure 1 depicts the phase portrait of the hyperchaotic Lü system (10). 

The hyperchaotic Cai system ([39], 2009) is described by the dynamics  

1 2 1

2 1 2 4 1 3

2

3 3 2

4 1

( )x p x x

x qx rx x x x

x sx x

x xε

= −

= + + −

= − +

= −

&

&

&

&

        (11) 
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where 1 2 3 4, , ,x x x x are the states and  , , , ,p q r s ε are constant, positive parameters of the system. 

The Cai dynamics (11) exhibits a hyperchaotic attractor when the parameter values are taken as  

 27.5,   3,   19.3,   2.9p q r s= = = =  and 3.3ε =  

Figure 2 depicts the phase portrait of the hyperchaotic Cai system (11).  

 

Figure 1. The Phase Portrait of the Hyperchaotic Lü System 

Figure 2. The Phase Portrait of the Hyperchaotic Cai System 
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4. GPS OF IDENTICAL HYPERCHAOTIC LÜ SYSTEMS 
 
4.1 Theoretical Results 
 
In this section, we apply the active nonlinear control method for the generalized projective 

synchronization (GPS) of two identical hyperchaotic Lü systems ([38], 2006).   

 

Thus, the master system is described by the hyperchaotic Lü dynamics 

1 2 1 4

2 2 1 3

3 3 1 2

4 4 1 3

( )x a x x x

x cx x x

x bx x x

x dx x x

= − +

= −

= − +

= +

&

&

&

&

         (12) 

where 
1 2 3 4, , ,x x x x are the states  and  , , ,a b c d are positive, constant parameters of the system. 

The slave system is described by the controlled hyperchaotic Lü dynamics 

  

1 2 1 4 1

2 2 1 3 2

3 3 1 2 3

4 4 1 3 4

( )y a y y y u

y cy y y u

y by y y u

y dy y y u

= − + +

= − +

= − + +

= + +

&

&

&

&

       (13) 

where 1 2 3 4, , ,y y y y are the states and 1 2 3 4, , ,u u u u are the active controls to be designed. 

 For the GPS of the systems (12) and (13), the synchronization error e is defined by 

  ,     ( 1, 2,3, 4)i i i ie y x iα= − =           (14) 

where the scales 1 2 3 4, , ,α α α α are real numbers. 

The error dynamics is obtained as 

1 1 2 1 2 4 1 4 1

2 2 1 3 2 1 3 2

3 3 1 2 3 1 2 3

4 4 1 3 4 1 3 4

( )e ae a y x y x u

e ce y y x x u

e be y y x x u

e de y y x x u

α α

α

α

α

= − + − + − +

= − + +

= − + − +

= + − +

&

&

&

&

     (15) 

We choose the nonlinear controller as 

1

2

3

4

1 2 1 2 4 1 4 1 1

2 1 3 2 1 3 2 2

3 1 2 3 1 2 3 3

4 1 3 4 1 3 4 4

( )u a

u ce

u

u de

e a y x y x k e

y y x x k e

be y y x x k e

y y x x k e

α

α

α

α α=

= −

= −

= − −

− − − + −

+ − −

+ −

+ −

     (16) 

where the gains 1 2 3 4, , ,k k k k are positive constants. 
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Substituting (16) into (15), the error dynamics simplifies to 

1 1

2 2

3 3

4 3

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

         (17) 

Next, we prove the following result. 

Theorem 1. The active feedback controller (16) achieves global chaos generalized projective 

synchronization (GPS) between the identical hyperchaotic Lü systems (12) and (13).   

Proof.  We consider the quadratic Lyapunov function defined by 

   ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                      (18) 

which is a positive definite function on 
4.R  

Differentiating (18) along the trajectories of (17), we get 

      
2 2 2 2

1 1 2 2 3 3 4 4( ) ,V e k e k e k e k e= − − − −&            (19) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [40], the error dynamics (17) is globally exponentially stable.  

This completes the proof. � 

 

4.2 Numerical Results 
 
For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the two 

systems of differential equations (12) and (13) with the active controller (16). 

The parameters of the identical hyperchaotic Lü systems are chosen as 

36,   3,   20,    1.3a b c d= = = =   

The initial values for the master system (12) are taken as 

  1 2 3 4(0) 24,   (0) 17,   (0) 12,    (0) 18 x x x x= = − = − =  

The initial values for the slave system (13) are taken as 

  1 2 3 4(0) 11,   (0) 20,   (0) 5,    (0) 34 y y y y= − = = − =  

The GPS scales are taken as 1 2 33.5,   2.9,   0.8,α α α= = − = and 4 1.4.α = −  

We take the state feedback gains as 5ik = for 1, 2,3, 4.i =  
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Figure 3 shows the GPS synchronization of the identical hyperchaotic Lü systems. Figure 4 

shows the time-history of the GPS errors 
1 2 3 4, , ,e e e e for the identical hyperchaotic Lü systems. 

Figure 3. GPS Synchronization of the Identical Hyperchaotic Lü Systems 

Figure 4. Time History of the GPS Synchronization Error  
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5. GPS OF IDENTICAL HYPERCHAOTIC CAI SYSTEMS 
 
5.1 Theoretical Results 
 
In this section, we apply the active nonlinear control method for the generalized projective 

synchronization (GPS) of two identical hyperchaotic Cai systems ([39], 2009).   

Thus, the master system is described by the hyperchaotic Cai dynamics 

 

  

1 2 1

2 1 2 4 1 3

2

3 3 2

4 1

( )x p x x

x qx rx x x x

x sx x

x xε

= −

= + + −

= − +

= −

&

&

&

&

         (20) 

where 1 2 3 4, , ,x x x x are the states  and  , , , ,p q r s ε are positive, constant parameters of the system. 

The slave system is described by the controlled hyperchaotic Cai dynamics 

    

1 2 1 1

2 1 2 4 1 3 2

2

3 3 2 3

4 1 4

( )y p y y u

y qy ry y y y u

y sy y u

y y uε

= − +

= + + − +

= − + +

= − +

&

&

&

&

      (21) 

where 1 2 3 4, , ,y y y y are the states and 1 2 3 4, , ,u u u u are the active controls to be designed. 

 For the GPS of the systems (20) and (21), the synchronization error e is defined by 

  

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

e

e

e

e

y x

y x

y x

y x

α

α

α

α

= −

= −

= −

= −

             (22) 

where the scales 1 2 3 4, , ,α α α α are real numbers. 

The error dynamics is obtained as 

1 1 2 1 2 1

2 2 1 2 1 4 2 4 1 3 2 1 3 2

2 2

3 3 2 3 2 3

4 1 4 1 4

( )

( )

( )

e pe p y x u

e re q y x y x y y x x u

e se y x u

e y x u

α

α α α

α

ε α

= − + − +

= + − + − − + +

= − + − +

= − − +

&

&

&

&

    (23) 

We choose the nonlinear controller as 
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1 1 2 1 2 1 1

2 2 1 2 1 4 2 4 1 3 2 1 3 2 2

2 2

3 3 2 3 2 3 3

4 1 4 1 4 4

( )

( )

( )

u pe p y x k e

u re q y x y x y y x x k e

u se y x k e

u y x k e

α

α α α

α

ε α

= − − −

= − − − − + + − −

= − + −

= − −

    (24) 

where the gains 1 2 3, ,k k k are positive constants. 

Substituting (24) into (23), the error dynamics simplifies to 

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

         (25) 

Next, we prove the following result. 

Theorem 2. The active feedback controller (24) achieves global chaos generalized projective 

synchronization (GPS) between the identical hyperchaotic Cai systems (20) and (21).   

Proof.  We consider the quadratic Lyapunov function defined by 

   ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                      (26) 

which is a positive definite function on 
4.R  

Differentiating (26) along the trajectories of (25), we get 

      
2 2 2 2

1 1 2 2 3 3 4 4( ) ,V e k e k e k e k e= − − − −&            (27) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [40], the error dynamics (25) is globally exponentially stable.  

This completes the proof. � 

 

5.2 Numerical Results 
 
For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the two 

systems of differential equations (20) and (21) with the active controller (24). 

The parameters of the identical hyperchaotic Cai systems are chosen as 

   27.5,   3,   19.3,   2.9,   3.3p q r s ε= = = = =  

The initial values for the master system (20) are taken as 

  1 2 3 4(0) 15,   (0) 26,   (0) 10,   (0) 8x x x x= = = − =  
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The initial values for the slave system (21) are taken as 

  
1 2 3 4(0) 21,   (0) 17,   (0) 34,   (0) 12y y y y= − = = − =  

The GPS scales are taken as  

            1 2 3 41.8,   0.6,   3.8,   2.7α α α α= − = = − =  

 We take the state feedback gains as  

5ik =  for 1,2,3,4.i =  

Figure 5 shows the GPS synchronization of the identical hyperchaotic Cai systems.  

Figure 6 shows the time-history of the GPS synchronization errors for the identical hyperchaotic 

Cai systems. 

Figure 5. GPS Synchronization of the Identical Hyperchaotic Cai Systems 
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Figure 6. Time History of the GPS Synchronization Error  

 

6. GPS OF HYPERCHAOTIC LÜ AND HYPERCHAOTIC CAI SYSTEMS 
 
6.1 Theoretical Results 
 
In this section, we apply the active nonlinear control method for the generalized projective 

synchronization (GPS) of hyperchaotic Lü and hyperchaotic Cai systems.   

 

Thus, the master system is described by the hyperchaotic Lü dynamics 

    

1 2 1 4

2 2 1 3

3 3 1 2

4 4 1 3

( )x a x x x

x cx x x

x bx x x

x dx x x

= − +

= −

= − +

= +

&

&

&

&

         (28) 

where 1 2 3 4, , ,x x x x are the states and , , ,a b c d are constant, positive parameters of the system. 

The slave system is described by the controlled hyperchaotic Cai dynamics 

     

1 2 1 1

2 1 2 4 1 3 2

2

3 3 2 3

4 1 4

( )y p y y u

y qy ry y y y u

y sy y u

y y uε

= − +

= + + − +

= − + +

= − +

&

&

&

&

       (29) 
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where 1 2 3 4, , ,y y y y are the states, , , , ,p q r s ε  are positive, constant parameters of the system and 

1 2 3 4, , ,u u u u are the active nonlinear controls to be designed. 

 For the GPS of the systems (28) and (29), the synchronization error e is defined by 

  ,     ( 1, 2,3, 4)i i i ie y x iα= − =        (30) 

where the scales 1 2 3 4, , ,α α α α are real numbers. 

The error dynamics is obtained as 

[ ]

[ ]

[ ]

[ ]

1 2 1 1 2 1 4 1

2 1 2 4 1 3 2 2 1 3 2

2

3 3 2 3 3 1 2 3

4 1 4 4 1 3 4

( ) ( )e p y y a x x x u

e qy ry y y y cx x x u

e sy y bx x x u

e y dx x x u

α

α

α

ε α

= − − − + +

= + + − − − +

= − + − − + +

= − − + +

&

&

&

&

     (31) 

We choose the nonlinear controller as 

[ ]

[ ]

[ ]

[ ]

1 2 1 1 2 1 4 1 1

2 1 2 4 1 3 2 2 1 3 2 2

2

3 3 2 3 3 1 2 3 3

4 1 4 4 1 3 4 4

( ) ( )u p y y a x x x k e

u qy ry y y y cx x x k e

u sy y bx x x k e

u y dx x x k e

α

α

α

ε α

= − − + − + −

= − − − + + − −

= − + − + −

= + + −

     (32) 

where the gains 
1 2 3 4, , ,k k k k are positive constants. 

Substituting (32) into (31), the error dynamics simplifies to 

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

         (33) 

Next, we prove the following result. 

 

Theorem 3. The active feedback controller (32) achieves global chaos generalized projective 

synchronization (GPS) between the hyperchaotic Lü system (28) and hyperchaotic Cai system 

(29).   

 

Proof.  We consider the quadratic Lyapunov function defined by 

   ( )2 2 2 2

1 2 3 4
( )

1 1
,

2 2

T
V e e e e e e e= = + + +                      (34) 

which is a positive definite function on 
4.R  
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Differentiating (26) along the trajectories of (33), we get 

      
2 2 2 2

1 1 2 2 3 3 4 4( ) ,V e k e k e k e k e= − − − −&            (35) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [40], the error dynamics (33) is globally exponentially stable.  

This completes the proof. � 

 

6.2 Numerical Results 
 
For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the two 

systems of differential equations (28) and (29) with the active controller (32). 

The parameters of the hyperchaotic Lü system are chosen as 

36,   3,   20,   1.3a b c d= = = =  

The parameters of the hyperchaotic Cai system are chosen as 

27.5,   3,  19.3,   2.9,  3.3p q r s ε= = = = =  

The initial values for the master system (28) are taken as 

  
1 2 3 4(0) 12,   (0) 24,   (0) 39,   (0) 17x x x x= = = − = −  

The initial values for the slave system (29) are taken as 

  1 2 3 4(0) 11,   (0) 28,   (0) 7,   (0) 20y y y y= − = = =  

The GPS scales are taken as  

 1 2 3 42.1,   1.5,   3.6,   0.6α α α α= = − = − =  

 We take the state feedback gains as  

5ik =  for 1, 2,3, 4i =  

Figure 7 shows the GPS synchronization of the non-identical hyperchaotic Lü and hyperchaotic 

Cai systems. 

Figure 8 shows the time-history of the GPS synchronization errors 1 2 3 4, , ,e e e e for the non-

identical hyperchaotic Lü and hyperchaotic Cai systems. 
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Figure 7. GPS Synchronization of the Hyperchaotic Lü and Hyperchaotic Cai Systems 

 

Figure 8. Time History of the GPS Synchronization Error  
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7. CONCLUSIONS 
 
In this paper, we had derived active control laws for achieving generalized projective 

synchronization (GPS) of the following pairs of hyperchaotic systems: 

 

(A) Identical Hyperchaotic Lü Systems (2006) 

(B) Identical Hyperchaotic Cai systems (2009) 

(C) Non-identical Hyperchaotic Lü and Hyperchaotic Cai systems 

 

The synchronization results (GPS) derived in this paper for the hyperchaotic Lü and hyperchaotic 

Cai systems have been proved using Lyapunov stability theory. Since Lyapunov exponents are 

not required for these calculations, the proposed active control method is very effective and 

suitable for achieving GPS of the hyperchaotic systems addressed in this paper. Numerical 

simulations are shown to demonstrate the effectiveness of the GPS synchronization results 

derived in this paper for the hyperchaotic Lü and hyperchaotic Cai systems. 
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